The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Certain contact metrics satisfying the Miao-Tam critical condition”

Bulk superconductivity in Type II superconductors near the second critical field

Soren Fournais, Bernard Helffer (2010)

Journal of the European Mathematical Society

Similarity:

We consider superconductors of Type II near the transition from the ‘bulk superconducting’ to the ‘surface superconducting’ state. We prove a new L estimate on the order parameter in the bulk, i.e. away from the boundary. This solves an open problem posed by Aftalion and Serfaty [AS].

On a class of nonlocal problem involving a critical exponent

Anass Ourraoui (2015)

Communications in Mathematics

Similarity:

In this work, by using the Mountain Pass Theorem, we give a result on the existence of solutions concerning a class of nonlocal p -Laplacian Dirichlet problems with a critical nonlinearity and small perturbation.

Existence of a positive ground state solution for a Kirchhoff type problem involving a critical exponent

Lan Zeng, Chun Lei Tang (2016)

Annales Polonici Mathematici

Similarity:

We consider the following Kirchhoff type problem involving a critical nonlinearity: ⎧ - [ a + b ( Ω | u | ² d x ) m ] Δ u = f ( x , u ) + | u | 2 * - 2 u in Ω, ⎨ ⎩ u = 0 on ∂Ω, where Ω N (N ≥ 3) is a smooth bounded domain with smooth boundary ∂Ω, a > 0, b ≥ 0, and 0 < m < 2/(N-2). Under appropriate assumptions on f, we show the existence of a positive ground state solution via the variational method.

Some results on critical groups for a class of functionals defined on Sobolev Banach spaces

Silvia Cingolani, Giuseppina Vannella (2001)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We present critical groups estimates for a functional f defined on the Banach space W 0 1 , p Ω , Ω bounded domain in R N , 2 < p < , associated to a quasilinear elliptic equation involving p -laplacian. In spite of the lack of an Hilbert structure and of Fredholm property of the second order differential of f in each critical point, we compute the critical groups of f in each isolated critical point via Morse index.

On cusps and flat tops

Neil Dobbs (2014)

Annales de l’institut Fourier

Similarity:

Non-invertible Pesin theory is developed for a class of piecewise smooth interval maps which may have unbounded derivative, but satisfy a property analogous to C 1 + ϵ . The critical points are not required to verify a non-flatness condition, so the results are applicable to C 1 + ϵ maps with flat critical points. If the critical points are too flat, then no absolutely continuous invariant probability measure can exist. This generalises a result of Benedicks and Misiurewicz.

On Kirchhoff type problems involving critical and singular nonlinearities

Chun-Yu Lei, Chang-Mu Chu, Hong-Min Suo, Chun-Lei Tang (2015)

Annales Polonici Mathematici

Similarity:

In this paper, we are interested in multiple positive solutions for the Kirchhoff type problem ⎧ - ( a + b Ω | u | ² d x ) Δ u = u + λ u q - 1 / | x | β in Ω ⎨ ⎩ u = 0 on ∂Ω, where Ω ⊂ ℝ³ is a smooth bounded domain, 0∈Ω, 1 < q < 2, λ is a positive parameter and β satisfies some inequalities. We obtain the existence of a positive ground state solution and multiple positive solutions via the Nehari manifold method.

Existence of two positive solutions for a class of semilinear elliptic equations with singularity and critical exponent

Jia-Feng Liao, Jiu Liu, Peng Zhang, Chun-Lei Tang (2016)

Annales Polonici Mathematici

Similarity:

We study the following singular elliptic equation with critical exponent ⎧ - Δ u = Q ( x ) u 2 * - 1 + λ u - γ in Ω, ⎨u > 0 in Ω, ⎩u = 0 on ∂Ω, where Ω N (N≥3) is a smooth bounded domain, and λ > 0, γ ∈ (0,1) are real parameters. Under appropriate assumptions on Q, by the constrained minimizer and perturbation methods, we obtain two positive solutions for all λ > 0 small enough.

A generalization of boundedly compact metric spaces

Gerald Beer, Anna Di Concilio (1991)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A metric space X , d is called a UC space provided each continuous function on X into a metric target space is uniformly continuous. We introduce a class of metric spaces that play, relative to the boundedly compact metric spaces, the same role that UC spaces play relative to the compact metric spaces.

Fractal star bodies

Irmina Herburt, Maria Moszyńska, Dorette Pronk (2009)

Banach Center Publications

Similarity:

In 1989 R. Arnold proved that for every pair (A,B) of compact convex subsets of ℝ there is an Euclidean isometry optimal with respect to L₂ metric and if f₀ is such an isometry, then the Steiner points of f₀(A) and B coincide. In the present paper we solve related problems for metrics topologically equivalent to the Hausdorff metric, in particular for L p metrics for all p ≥ 2 and the symmetric difference metric.