Width asymptotics for a pair of Reinhardt domains

A. Aytuna; A. Rashkovskii; V. Zahariuta

Annales Polonici Mathematici (2002)

  • Volume: 78, Issue: 1, page 31-38
  • ISSN: 0066-2216

Abstract

top
For complete Reinhardt pairs “compact set - domain” K ⊂ D in ℂⁿ, we prove Zahariuta’s conjecture about the exact asymptotics l n d s ( A K D ) - ( ( n ! s ) / τ ( K , D ) ) 1 / n , s → ∞, for the Kolmogorov widths d s ( A K D ) of the compact set in C(K) consisting of all analytic functions in D with moduli not exceeding 1 in D, τ(K,D) being the condenser pluricapacity of K with respect to D.

How to cite

top

A. Aytuna, A. Rashkovskii, and V. Zahariuta. "Width asymptotics for a pair of Reinhardt domains." Annales Polonici Mathematici 78.1 (2002): 31-38. <http://eudml.org/doc/280526>.

@article{A2002,
abstract = {For complete Reinhardt pairs “compact set - domain” K ⊂ D in ℂⁿ, we prove Zahariuta’s conjecture about the exact asymptotics $ln d_s(A_K^D) ~ -((n!s)/τ(K,D))^\{1/n\}$, s → ∞, for the Kolmogorov widths $d_s(A_K^D)$ of the compact set in C(K) consisting of all analytic functions in D with moduli not exceeding 1 in D, τ(K,D) being the condenser pluricapacity of K with respect to D.},
author = {A. Aytuna, A. Rashkovskii, V. Zahariuta},
journal = {Annales Polonici Mathematici},
keywords = {Kolmogorov width; pluricapacity; Reinhardt domain},
language = {eng},
number = {1},
pages = {31-38},
title = {Width asymptotics for a pair of Reinhardt domains},
url = {http://eudml.org/doc/280526},
volume = {78},
year = {2002},
}

TY - JOUR
AU - A. Aytuna
AU - A. Rashkovskii
AU - V. Zahariuta
TI - Width asymptotics for a pair of Reinhardt domains
JO - Annales Polonici Mathematici
PY - 2002
VL - 78
IS - 1
SP - 31
EP - 38
AB - For complete Reinhardt pairs “compact set - domain” K ⊂ D in ℂⁿ, we prove Zahariuta’s conjecture about the exact asymptotics $ln d_s(A_K^D) ~ -((n!s)/τ(K,D))^{1/n}$, s → ∞, for the Kolmogorov widths $d_s(A_K^D)$ of the compact set in C(K) consisting of all analytic functions in D with moduli not exceeding 1 in D, τ(K,D) being the condenser pluricapacity of K with respect to D.
LA - eng
KW - Kolmogorov width; pluricapacity; Reinhardt domain
UR - http://eudml.org/doc/280526
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.