Width asymptotics for a pair of Reinhardt domains
A. Aytuna; A. Rashkovskii; V. Zahariuta
Annales Polonici Mathematici (2002)
- Volume: 78, Issue: 1, page 31-38
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topA. Aytuna, A. Rashkovskii, and V. Zahariuta. "Width asymptotics for a pair of Reinhardt domains." Annales Polonici Mathematici 78.1 (2002): 31-38. <http://eudml.org/doc/280526>.
@article{A2002,
abstract = {For complete Reinhardt pairs “compact set - domain” K ⊂ D in ℂⁿ, we prove Zahariuta’s conjecture about the exact asymptotics
$ln d_s(A_K^D) ~ -((n!s)/τ(K,D))^\{1/n\}$, s → ∞,
for the Kolmogorov widths $d_s(A_K^D)$ of the compact set in C(K) consisting of all analytic functions in D with moduli not exceeding 1 in D, τ(K,D) being the condenser pluricapacity of K with respect to D.},
author = {A. Aytuna, A. Rashkovskii, V. Zahariuta},
journal = {Annales Polonici Mathematici},
keywords = {Kolmogorov width; pluricapacity; Reinhardt domain},
language = {eng},
number = {1},
pages = {31-38},
title = {Width asymptotics for a pair of Reinhardt domains},
url = {http://eudml.org/doc/280526},
volume = {78},
year = {2002},
}
TY - JOUR
AU - A. Aytuna
AU - A. Rashkovskii
AU - V. Zahariuta
TI - Width asymptotics for a pair of Reinhardt domains
JO - Annales Polonici Mathematici
PY - 2002
VL - 78
IS - 1
SP - 31
EP - 38
AB - For complete Reinhardt pairs “compact set - domain” K ⊂ D in ℂⁿ, we prove Zahariuta’s conjecture about the exact asymptotics
$ln d_s(A_K^D) ~ -((n!s)/τ(K,D))^{1/n}$, s → ∞,
for the Kolmogorov widths $d_s(A_K^D)$ of the compact set in C(K) consisting of all analytic functions in D with moduli not exceeding 1 in D, τ(K,D) being the condenser pluricapacity of K with respect to D.
LA - eng
KW - Kolmogorov width; pluricapacity; Reinhardt domain
UR - http://eudml.org/doc/280526
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.