2-D polynomial equations
Kybernetika (1983)
- Volume: 19, Issue: 3, page 212-224
- ISSN: 0023-5954
Access Full Article
topHow to cite
topŠebek, Michael. "2-D polynomial equations." Kybernetika 19.3 (1983): 212-224. <http://eudml.org/doc/28068>.
@article{Šebek1983,
author = {Šebek, Michael},
journal = {Kybernetika},
keywords = {two-dimensional polynomial equations; minimum degree solution; computational algorithm},
language = {eng},
number = {3},
pages = {212-224},
publisher = {Institute of Information Theory and Automation AS CR},
title = {2-D polynomial equations},
url = {http://eudml.org/doc/28068},
volume = {19},
year = {1983},
}
TY - JOUR
AU - Šebek, Michael
TI - 2-D polynomial equations
JO - Kybernetika
PY - 1983
PB - Institute of Information Theory and Automation AS CR
VL - 19
IS - 3
SP - 212
EP - 224
LA - eng
KW - two-dimensional polynomial equations; minimum degree solution; computational algorithm
UR - http://eudml.org/doc/28068
ER -
References
top- E. Bertini, Zum Fundamentalsatz aus der Theorie der algebraischen Funktionen, Math. Ann. 34 (1889), 447-449. MR1510584
- N. K. Bose, Multidimensional Systems: Theory and Applications, IEEE Press, New York 1979. (1979)
- R. Eising, 2-D Systems - An Algebraic Approach, Ph. D. Dissertation, Eindhoven University of Technology, Eindhoven 1979. (1979) Zbl0426.93028MR0596404
- E. Emre, The polynomial equation with application to dynamic feedback, SIAM J. Control Optim. 18 (1980), 6, 611-620. (1980) MR0592921
- E. Emre, P. P. Khargonekar, Regulation of split linear systems over rings: coefficient-assignment and observers, IEEE Trans. Automat. Control AC-27 (1982), 1, 104-113. (1982) Zbl0502.93019MR0673076
- T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs 1980. (1980) Zbl0454.93001MR0569473
- E. W. Kamen, A note on the representation of lumped-distributed networks, delay-differential systems and 2-D systems, IEEE Trans. Circuits and Systems CAS-27 (1980), 5, 430-432. (1980)
- E. W. Kamen, Linear systems with comensurate time delays: stability and stabilization independent of delay, IEEE Trans. Automat. Control AC-27 (1982), 2, 367-375. (1982) MR0680101
- V. Kučera, Discrete Linear Control: The Polynomial Equation Approach, Wiley, Chichester 1979. (1979) MR0573447
- A. S. Morse, Ring models for delay-differential systems, Automatica 12 (1976), 5, 529-531. (1976) Zbl0345.93023MR0437162
- M. Noether, Über einen Satz aus der Theorie der algebraischen Funktionen, Math. Ann. 6 (1873), 351-359.
- A. W. Olbrot, S. H. Żak, Controllability and observability problems for linear functional-differential systems, Foundations of Control Engineering 5 (1980), 2, 79 - 89. (1980) MR0580335
- P. N. Paraskevopoulos, Feedback design techniques for linear multivariable 2-D systems, In: Analysis and Optimization of Systems (A. Bensoussan and J. L. Lions, eds.), Springer-Verlag, Berlin-Heidelberg-New York 1980. (1980)
- [unknown], Special issue on multidimensional systems. Proc. IEEE 65 (1977), 6. (1977) Zbl1170.01341
- M. Šebek, 2-D Exact model matching, IEEE Trans. Automat. Control AC-28 (1983), 2, 215-217. (1983)
- L. N. Volgin, The Fundamentals of the Theory of Controlling Machines, (in Russian). Soviet Radio, Moscow 1962. (1962)
- B. L. van der Waerden, Modern Algebra, 4th ed. (2 volumes). Frederic Ungar Publishing Co., New York 1964. (1964)
- W. A. Wolovich, Linear Multivariable Systems, Springer-Verlag, New York-Heidelberg-Berlin 1974. (1974) Zbl0291.93002MR0359881
Citations in EuDML Documents
top- Graziano Gentili, Daniele C. Struppa, Minimal degree solutions of polynomial equations
- Michael Šebek, Model matching of 2-D multi-input multi-output systems
- Michael Šebek, Characteristic polynomial assignment for delay-differential systems via 2-D polynomial equations
- Edoardo Ballico, Daniele C. Struppa, Minimal degree solutions for the Bezout equation
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.