2-D polynomial equations

Michael Šebek

Kybernetika (1983)

  • Volume: 19, Issue: 3, page 212-224
  • ISSN: 0023-5954

How to cite

top

Šebek, Michael. "2-D polynomial equations." Kybernetika 19.3 (1983): 212-224. <http://eudml.org/doc/28068>.

@article{Šebek1983,
author = {Šebek, Michael},
journal = {Kybernetika},
keywords = {two-dimensional polynomial equations; minimum degree solution; computational algorithm},
language = {eng},
number = {3},
pages = {212-224},
publisher = {Institute of Information Theory and Automation AS CR},
title = {2-D polynomial equations},
url = {http://eudml.org/doc/28068},
volume = {19},
year = {1983},
}

TY - JOUR
AU - Šebek, Michael
TI - 2-D polynomial equations
JO - Kybernetika
PY - 1983
PB - Institute of Information Theory and Automation AS CR
VL - 19
IS - 3
SP - 212
EP - 224
LA - eng
KW - two-dimensional polynomial equations; minimum degree solution; computational algorithm
UR - http://eudml.org/doc/28068
ER -

References

top
  1. E. Bertini, Zum Fundamentalsatz aus der Theorie der algebraischen Funktionen, Math. Ann. 34 (1889), 447-449. MR1510584
  2. N. K. Bose, Multidimensional Systems: Theory and Applications, IEEE Press, New York 1979. (1979) 
  3. R. Eising, 2-D Systems - An Algebraic Approach, Ph. D. Dissertation, Eindhoven University of Technology, Eindhoven 1979. (1979) Zbl0426.93028MR0596404
  4. E. Emre, The polynomial equation Q Q c + R P c = with application to dynamic feedback, SIAM J. Control Optim. 18 (1980), 6, 611-620. (1980) MR0592921
  5. E. Emre, P. P. Khargonekar, Regulation of split linear systems over rings: coefficient-assignment and observers, IEEE Trans. Automat. Control AC-27 (1982), 1, 104-113. (1982) Zbl0502.93019MR0673076
  6. T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs 1980. (1980) Zbl0454.93001MR0569473
  7. E. W. Kamen, A note on the representation of lumped-distributed networks, delay-differential systems and 2-D systems, IEEE Trans. Circuits and Systems CAS-27 (1980), 5, 430-432. (1980) 
  8. E. W. Kamen, Linear systems with comensurate time delays: stability and stabilization independent of delay, IEEE Trans. Automat. Control AC-27 (1982), 2, 367-375. (1982) MR0680101
  9. V. Kučera, Discrete Linear Control: The Polynomial Equation Approach, Wiley, Chichester 1979. (1979) MR0573447
  10. A. S. Morse, Ring models for delay-differential systems, Automatica 12 (1976), 5, 529-531. (1976) Zbl0345.93023MR0437162
  11. M. Noether, Über einen Satz aus der Theorie der algebraischen Funktionen, Math. Ann. 6 (1873), 351-359. 
  12. A. W. Olbrot, S. H. Żak, Controllability and observability problems for linear functional-differential systems, Foundations of Control Engineering 5 (1980), 2, 79 - 89. (1980) MR0580335
  13. P. N. Paraskevopoulos, Feedback design techniques for linear multivariable 2-D systems, In: Analysis and Optimization of Systems (A. Bensoussan and J. L. Lions, eds.), Springer-Verlag, Berlin-Heidelberg-New York 1980. (1980) 
  14. [unknown], Special issue on multidimensional systems. Proc. IEEE 65 (1977), 6. (1977) Zbl1170.01341
  15. M. Šebek, 2-D Exact model matching, IEEE Trans. Automat. Control AC-28 (1983), 2, 215-217. (1983) 
  16. L. N. Volgin, The Fundamentals of the Theory of Controlling Machines, (in Russian). Soviet Radio, Moscow 1962. (1962) 
  17. B. L. van der Waerden, Modern Algebra, 4th ed. (2 volumes). Frederic Ungar Publishing Co., New York 1964. (1964) 
  18. W. A. Wolovich, Linear Multivariable Systems, Springer-Verlag, New York-Heidelberg-Berlin 1974. (1974) Zbl0291.93002MR0359881

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.