Minimal degree solutions for the Bezout equation

Edoardo Ballico; Daniele C. Struppa

Kybernetika (1987)

  • Volume: 23, Issue: 5, page 360-364
  • ISSN: 0023-5954

How to cite

top

Ballico, Edoardo, and Struppa, Daniele C.. "Minimal degree solutions for the Bezout equation." Kybernetika 23.5 (1987): 360-364. <http://eudml.org/doc/29036>.

@article{Ballico1987,
author = {Ballico, Edoardo, Struppa, Daniele C.},
journal = {Kybernetika},
keywords = {Bezout equation; degree forms; regular sequence},
language = {eng},
number = {5},
pages = {360-364},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Minimal degree solutions for the Bezout equation},
url = {http://eudml.org/doc/29036},
volume = {23},
year = {1987},
}

TY - JOUR
AU - Ballico, Edoardo
AU - Struppa, Daniele C.
TI - Minimal degree solutions for the Bezout equation
JO - Kybernetika
PY - 1987
PB - Institute of Information Theory and Automation AS CR
VL - 23
IS - 5
SP - 360
EP - 364
LA - eng
KW - Bezout equation; degree forms; regular sequence
UR - http://eudml.org/doc/29036
ER -

References

top
  1. C. A. Berenstein, D. C. Struppa, On explicit solutions to the Bezout equation, Syst. Control Lett. 4 (1984), 33-39. (1984) Zbl0538.15005MR0735250
  2. N. K. Bose, Applied Multidimensional Systems Theory, Van Nostrand, New York 1982. (1982) Zbl0574.93031MR0652483
  3. G. Gentili, D. C. Struppa, Minimal degree solutions of polynomial equations, Kybernetika 23(1987), 1,44-53. (1987) Zbl0624.13008MR0883906
  4. P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York 1978. (1978) Zbl0408.14001MR0507725
  5. H. Matsumura, Commutative Algebra, Benjamin, New York 1970. (1970) Zbl0211.06501MR0266911
  6. M. Šebek, 2-D polynomial equations, Kybernetika 19 (1983), 212-224. (1983) MR0716650
  7. E. D. Sontag, Linear systems over commutative rings: a (partial) updated survey, In: Proceedings IFAC/81, Kyoto, Japan 1981. (1981) MR0735820

NotesEmbed ?

top

You must be logged in to post comments.