# On convex and *-concave multifunctions

Annales Polonici Mathematici (2005)

- Volume: 86, Issue: 2, page 165-170
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topBożena Piątek. "On convex and *-concave multifunctions." Annales Polonici Mathematici 86.2 (2005): 165-170. <http://eudml.org/doc/281064>.

@article{BożenaPiątek2005,

abstract = {A continuous multifunction F:[a,b] → clb(Y) is *-concave if and only if the inclusion
$1/(t-s) ∫_s^t F(x)dx ⊂ (F(s) \{\{*\}\over \{+\}\} F(t))/2$
holds for every s,t ∈ [a,b], s < t.},

author = {Bożena Piątek},

journal = {Annales Polonici Mathematici},

keywords = {Hadamard inequality; separation theorem; Hausdorff metric; *-concave and convex multifunctions},

language = {eng},

number = {2},

pages = {165-170},

title = {On convex and *-concave multifunctions},

url = {http://eudml.org/doc/281064},

volume = {86},

year = {2005},

}

TY - JOUR

AU - Bożena Piątek

TI - On convex and *-concave multifunctions

JO - Annales Polonici Mathematici

PY - 2005

VL - 86

IS - 2

SP - 165

EP - 170

AB - A continuous multifunction F:[a,b] → clb(Y) is *-concave if and only if the inclusion
$1/(t-s) ∫_s^t F(x)dx ⊂ (F(s) {{*}\over {+}} F(t))/2$
holds for every s,t ∈ [a,b], s < t.

LA - eng

KW - Hadamard inequality; separation theorem; Hausdorff metric; *-concave and convex multifunctions

UR - http://eudml.org/doc/281064

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.