On convex and *-concave multifunctions
Annales Polonici Mathematici (2005)
- Volume: 86, Issue: 2, page 165-170
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topBożena Piątek. "On convex and *-concave multifunctions." Annales Polonici Mathematici 86.2 (2005): 165-170. <http://eudml.org/doc/281064>.
@article{BożenaPiątek2005,
abstract = {A continuous multifunction F:[a,b] → clb(Y) is *-concave if and only if the inclusion
$1/(t-s) ∫_s^t F(x)dx ⊂ (F(s) \{\{*\}\over \{+\}\} F(t))/2$
holds for every s,t ∈ [a,b], s < t.},
author = {Bożena Piątek},
journal = {Annales Polonici Mathematici},
keywords = {Hadamard inequality; separation theorem; Hausdorff metric; *-concave and convex multifunctions},
language = {eng},
number = {2},
pages = {165-170},
title = {On convex and *-concave multifunctions},
url = {http://eudml.org/doc/281064},
volume = {86},
year = {2005},
}
TY - JOUR
AU - Bożena Piątek
TI - On convex and *-concave multifunctions
JO - Annales Polonici Mathematici
PY - 2005
VL - 86
IS - 2
SP - 165
EP - 170
AB - A continuous multifunction F:[a,b] → clb(Y) is *-concave if and only if the inclusion
$1/(t-s) ∫_s^t F(x)dx ⊂ (F(s) {{*}\over {+}} F(t))/2$
holds for every s,t ∈ [a,b], s < t.
LA - eng
KW - Hadamard inequality; separation theorem; Hausdorff metric; *-concave and convex multifunctions
UR - http://eudml.org/doc/281064
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.