On deviations from rational functions of entire functions of finite lower order
E. Ciechanowicz; I. I. Marchenko
Annales Polonici Mathematici (2007)
- Volume: 91, Issue: 2-3, page 161-177
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topE. Ciechanowicz, and I. I. Marchenko. "On deviations from rational functions of entire functions of finite lower order." Annales Polonici Mathematici 91.2-3 (2007): 161-177. <http://eudml.org/doc/281065>.
@article{E2007,
abstract = {Let f be a transcendental entire function of finite lower order, and let $q_\{ν\}$ be rational functions. For 0 < γ < ∞ let
B(γ):= πγ/sinπγ if γ ≤ 0.5,
B(γ):= πγ if γ > 0.5.
We estimate the upper and lower logarithmic density of the set
$\{r: ∑_\{1≤ν≤k\} log⁺ max_\{||z||=r\} |f(z)−q_\{ν\}(z)|^\{−1\} < B(γ)T(r,f)\}$.},
author = {E. Ciechanowicz, I. I. Marchenko},
journal = {Annales Polonici Mathematici},
keywords = {entire function; subharmonic function; logarithmic density},
language = {eng},
number = {2-3},
pages = {161-177},
title = {On deviations from rational functions of entire functions of finite lower order},
url = {http://eudml.org/doc/281065},
volume = {91},
year = {2007},
}
TY - JOUR
AU - E. Ciechanowicz
AU - I. I. Marchenko
TI - On deviations from rational functions of entire functions of finite lower order
JO - Annales Polonici Mathematici
PY - 2007
VL - 91
IS - 2-3
SP - 161
EP - 177
AB - Let f be a transcendental entire function of finite lower order, and let $q_{ν}$ be rational functions. For 0 < γ < ∞ let
B(γ):= πγ/sinπγ if γ ≤ 0.5,
B(γ):= πγ if γ > 0.5.
We estimate the upper and lower logarithmic density of the set
${r: ∑_{1≤ν≤k} log⁺ max_{||z||=r} |f(z)−q_{ν}(z)|^{−1} < B(γ)T(r,f)}$.
LA - eng
KW - entire function; subharmonic function; logarithmic density
UR - http://eudml.org/doc/281065
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.