Measure and Helly's Intersection Theorem for Convex Sets

N. Stavrakas

Bulletin of the Polish Academy of Sciences. Mathematics (2008)

  • Volume: 56, Issue: 1, page 59-65
  • ISSN: 0239-7269

Abstract

top
Let = F α be a uniformly bounded collection of compact convex sets in ℝ ⁿ. Katchalski extended Helly’s theorem by proving for finite ℱ that dim (⋂ ℱ) ≥ d, 0 ≤ d ≤ n, if and only if the intersection of any f(n,d) elements has dimension at least d where f(n,0) = n+1 = f(n,n) and f(n,d) = maxn+1,2n-2d+2 for 1 ≤ d ≤ n-1. An equivalent statement of Katchalski’s result for finite ℱ is that there exists δ > 0 such that the intersection of any f(n,d) elements of ℱ contains a d-dimensional ball of measure δ where f(n,0) = n+1 = f(n,n) and f(n,d) = maxn+1,2n-2d+2 for 1 ≤ d ≤ n-1. It is proven that this result holds if the word finite is omitted and extends a result of Breen in which f(n,0) = n+1 = f(n,n) and f(n,d) = 2n for 1 ≤ d ≤ n-1. This is applied to give necessary and sufficient conditions for the concepts of “visibility” and “clear visibility” to coincide for continua in ℝ ⁿ without any local connectivity conditions.

How to cite

top

N. Stavrakas. "Measure and Helly's Intersection Theorem for Convex Sets." Bulletin of the Polish Academy of Sciences. Mathematics 56.1 (2008): 59-65. <http://eudml.org/doc/281319>.

@article{N2008,
abstract = {Let $ℱ = \{F_α\}$ be a uniformly bounded collection of compact convex sets in ℝ ⁿ. Katchalski extended Helly’s theorem by proving for finite ℱ that dim (⋂ ℱ) ≥ d, 0 ≤ d ≤ n, if and only if the intersection of any f(n,d) elements has dimension at least d where f(n,0) = n+1 = f(n,n) and f(n,d) = maxn+1,2n-2d+2 for 1 ≤ d ≤ n-1. An equivalent statement of Katchalski’s result for finite ℱ is that there exists δ > 0 such that the intersection of any f(n,d) elements of ℱ contains a d-dimensional ball of measure δ where f(n,0) = n+1 = f(n,n) and f(n,d) = maxn+1,2n-2d+2 for 1 ≤ d ≤ n-1. It is proven that this result holds if the word finite is omitted and extends a result of Breen in which f(n,0) = n+1 = f(n,n) and f(n,d) = 2n for 1 ≤ d ≤ n-1. This is applied to give necessary and sufficient conditions for the concepts of “visibility” and “clear visibility” to coincide for continua in ℝ ⁿ without any local connectivity conditions.},
author = {N. Stavrakas},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
keywords = {Helly's theorem; cone; visibility},
language = {eng},
number = {1},
pages = {59-65},
title = {Measure and Helly's Intersection Theorem for Convex Sets},
url = {http://eudml.org/doc/281319},
volume = {56},
year = {2008},
}

TY - JOUR
AU - N. Stavrakas
TI - Measure and Helly's Intersection Theorem for Convex Sets
JO - Bulletin of the Polish Academy of Sciences. Mathematics
PY - 2008
VL - 56
IS - 1
SP - 59
EP - 65
AB - Let $ℱ = {F_α}$ be a uniformly bounded collection of compact convex sets in ℝ ⁿ. Katchalski extended Helly’s theorem by proving for finite ℱ that dim (⋂ ℱ) ≥ d, 0 ≤ d ≤ n, if and only if the intersection of any f(n,d) elements has dimension at least d where f(n,0) = n+1 = f(n,n) and f(n,d) = maxn+1,2n-2d+2 for 1 ≤ d ≤ n-1. An equivalent statement of Katchalski’s result for finite ℱ is that there exists δ > 0 such that the intersection of any f(n,d) elements of ℱ contains a d-dimensional ball of measure δ where f(n,0) = n+1 = f(n,n) and f(n,d) = maxn+1,2n-2d+2 for 1 ≤ d ≤ n-1. It is proven that this result holds if the word finite is omitted and extends a result of Breen in which f(n,0) = n+1 = f(n,n) and f(n,d) = 2n for 1 ≤ d ≤ n-1. This is applied to give necessary and sufficient conditions for the concepts of “visibility” and “clear visibility” to coincide for continua in ℝ ⁿ without any local connectivity conditions.
LA - eng
KW - Helly's theorem; cone; visibility
UR - http://eudml.org/doc/281319
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.