# The Legendre Formula in Clifford Analysis

Laville, Guy; Ramadanoff, Ivan

Serdica Mathematical Journal (2009)

- Volume: 35, Issue: 1, page 61-74
- ISSN: 1310-6600

## Access Full Article

top## Abstract

top## How to cite

topLaville, Guy, and Ramadanoff, Ivan. "The Legendre Formula in Clifford Analysis." Serdica Mathematical Journal 35.1 (2009): 61-74. <http://eudml.org/doc/281375>.

@article{Laville2009,

abstract = {2000 Mathematics Subject Classification: 30A05, 33E05, 30G30, 30G35, 33E20.Let R0,2m+1 be the Clifford algebra of the antieuclidean 2m+1 dimensional space. The elliptic Cliffordian functions may be generated by the z2m+2 function, analogous to the well-known Weierstrass z-function. The latter satisfies a Legendre equality. We prove a corresponding formula at the level of the monogenic function Dm z2m+2.},

author = {Laville, Guy, Ramadanoff, Ivan},

journal = {Serdica Mathematical Journal},

keywords = {Clifford Analysis; Monogenic Functions; Holomorphic Cliffordian Functions; Elliptic Functions; Weierstrass Zeta Function; Legendre Formula; Clifford analysis; monogenic functions; holomorphic Cliffordian functions; elliptic functions; Weierstrass zeta function; Legendre formula},

language = {eng},

number = {1},

pages = {61-74},

publisher = {Institute of Mathematics and Informatics Bulgarian Academy of Sciences},

title = {The Legendre Formula in Clifford Analysis},

url = {http://eudml.org/doc/281375},

volume = {35},

year = {2009},

}

TY - JOUR

AU - Laville, Guy

AU - Ramadanoff, Ivan

TI - The Legendre Formula in Clifford Analysis

JO - Serdica Mathematical Journal

PY - 2009

PB - Institute of Mathematics and Informatics Bulgarian Academy of Sciences

VL - 35

IS - 1

SP - 61

EP - 74

AB - 2000 Mathematics Subject Classification: 30A05, 33E05, 30G30, 30G35, 33E20.Let R0,2m+1 be the Clifford algebra of the antieuclidean 2m+1 dimensional space. The elliptic Cliffordian functions may be generated by the z2m+2 function, analogous to the well-known Weierstrass z-function. The latter satisfies a Legendre equality. We prove a corresponding formula at the level of the monogenic function Dm z2m+2.

LA - eng

KW - Clifford Analysis; Monogenic Functions; Holomorphic Cliffordian Functions; Elliptic Functions; Weierstrass Zeta Function; Legendre Formula; Clifford analysis; monogenic functions; holomorphic Cliffordian functions; elliptic functions; Weierstrass zeta function; Legendre formula

UR - http://eudml.org/doc/281375

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.