Prolongation of Poisson -form on Weil bundles
Norbert Mahoungou Moukala; Basile Guy Richard Bossoto
Archivum Mathematicum (2016)
- Volume: 052, Issue: 2, page 91-111
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topMoukala, Norbert Mahoungou, and Bossoto, Basile Guy Richard. "Prolongation of Poisson $2$-form on Weil bundles." Archivum Mathematicum 052.2 (2016): 91-111. <http://eudml.org/doc/281536>.
@article{Moukala2016,
abstract = {In this paper, $M$ denotes a smooth manifold of dimension $n$, $A$ a Weil algebra and $M^\{A\}$ the associated Weil bundle. When $(M,\omega _\{M\})$ is a Poisson manifold with $2$-form $\omega _\{M\}$, we construct the $2$-Poisson form $\omega _\{M^\{A\}\}^\{A\}$, prolongation on $M^\{A\}$ of the $2$-Poisson form $\omega _\{M\}$. We give a necessary and sufficient condition for that $M^\{A\}$ be an $A$-Poisson manifold.},
author = {Moukala, Norbert Mahoungou, Bossoto, Basile Guy Richard},
journal = {Archivum Mathematicum},
keywords = {Weil bundle; Weil algebra; Poisson manifold; Lie derivative; Poisson 2-form},
language = {eng},
number = {2},
pages = {91-111},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Prolongation of Poisson $2$-form on Weil bundles},
url = {http://eudml.org/doc/281536},
volume = {052},
year = {2016},
}
TY - JOUR
AU - Moukala, Norbert Mahoungou
AU - Bossoto, Basile Guy Richard
TI - Prolongation of Poisson $2$-form on Weil bundles
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 2
SP - 91
EP - 111
AB - In this paper, $M$ denotes a smooth manifold of dimension $n$, $A$ a Weil algebra and $M^{A}$ the associated Weil bundle. When $(M,\omega _{M})$ is a Poisson manifold with $2$-form $\omega _{M}$, we construct the $2$-Poisson form $\omega _{M^{A}}^{A}$, prolongation on $M^{A}$ of the $2$-Poisson form $\omega _{M}$. We give a necessary and sufficient condition for that $M^{A}$ be an $A$-Poisson manifold.
LA - eng
KW - Weil bundle; Weil algebra; Poisson manifold; Lie derivative; Poisson 2-form
UR - http://eudml.org/doc/281536
ER -
References
top- Bossoto, B.G.R., Okassa, E., Champs de vecteurs et formes différentielles sur une variété des points proches, Arch. Math. (Brno) 44 (2008), 159–171. (2008) Zbl1212.13016MR2432853
- Bossoto, B.G.R., Okassa, E., A-poisson structures on Weil bundles, Int. J. Contemp. Math. Sci. 7 (16) (2012), 785–803. (2012) Zbl1247.53093MR2901677
- Kolář, I., Michor, P.W., Slovák, J., Natural Operations in Differential Geometry, Springer, Berlin, 1993. (1993) MR1202431
- Laurent-Gengoux, C., Pichereau, A., Vanhaecke, P., Poisson Structures, Grundlehren Math. Wiss. 347 (2013), www.springer.com/series/138. (2013) MR2906391
- Lichnerowicz, A., 10.4310/jdg/1214433987, J. Differential Geom. 12 (1977), 253–300. (1977) Zbl0405.53024MR0501133DOI10.4310/jdg/1214433987
- Morimoto, A., 10.4310/jdg/1214433720, J. Differential Geom. 11 (1976), 479–498. (1976) Zbl0358.53013MR0445422DOI10.4310/jdg/1214433720
- Moukala, N.M., Bossoto, B.G.R., 10.5539/jmr.v7n3p141, Journal of Mathematics Research 7 (3) (2015), 141–148. (2015) DOI10.5539/jmr.v7n3p141
- Nkou, V.B., Bossoto, B.G.R., Okassa, E., New characterization of vector field on Weil bundles, Theoretical Mathematics Applications 5 (2) (2015), 1–17, arXiv:1504.04483 [math.DG]. (2015)
- Okassa, E., Prolongement des champs de vecteurs à des variétés des points proches, Ann. Fac. Sci. Toulouse Math. (5) 8 (3) (1986–1987), 346–366. (1986) MR0948759
- Okassa, E., 10.1016/j.jpaa.2006.05.013, J. Pure Appl. Algebra 208 (3) (2007), 1071–1089. (2007) Zbl1163.17025MR2283447DOI10.1016/j.jpaa.2006.05.013
- Okassa, E., 10.1142/S0219498808003107, J. Algebra Appl. 7 (2008), 749–772. (2008) Zbl1226.17017MR2483330DOI10.1142/S0219498808003107
- Okassa, E., 10.4153/CMB-2011-033-6, Canad. Math. Bull. 54 (4) (2011), 716–725. (2011) Zbl1232.53062MR2894521DOI10.4153/CMB-2011-033-6
- Shurygin, V.V., 10.1007/s10958-010-0051-6, J. Math. Sci. (New York) 169 (3) (2010), 315–341. (2010) MR2866746DOI10.1007/s10958-010-0051-6
- Vaisman, I., Lectures on the Geometry of Poisson Manifolds, Progress in Math., vol. 118, Birkhäuser Verlag, Basel, 1994. (1994) Zbl0810.53019MR1269545
- Weil, A., Théorie des points proches sur les variétés différentiables, Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg (1953), 111–117. (1953) Zbl0053.24903MR0061455
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.