On the Anderson-Badawi conjecture
Archivum Mathematicum (2016)
- Volume: 052, Issue: 2, page 71-78
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topNasehpour, Peyman. "On the Anderson-Badawi $\omega _{R[X]}(I[X])=\omega _R(I)$ conjecture." Archivum Mathematicum 052.2 (2016): 71-78. <http://eudml.org/doc/281547>.
@article{Nasehpour2016,
abstract = {Let $R$ be a commutative ring with an identity different from zero and $n$ be a positive integer. Anderson and Badawi, in their paper on $n$-absorbing ideals, define a proper ideal $I$ of a commutative ring $R$ to be an $n$-absorbing ideal of $R$, if whenever $x_1 \dots x_\{n+1\} \in I$ for $x_1, \ldots , x_\{n+1\} \in R$, then there are $n$ of the $x_i$’s whose product is in $I$ and conjecture that $\omega _\{R[X]\}(I[X])=\omega _R(I)$ for any ideal $I$ of an arbitrary ring $R$, where $\omega _R(I)= \min \lbrace n\colon I \text\{is\} \text\{an\} n\text\{-absorbing\} \text\{ideal\} \text\{of\} R\rbrace $. In the present paper, we use content formula techniques to prove that their conjecture is true, if one of the following conditions hold: The ring $R$ is a Prüfer domain. The ring $R$ is a Gaussian ring such that its additive group is torsion-free. The additive group of the ring $R$ is torsion-free and $I$ is a radical ideal of $R$.},
author = {Nasehpour, Peyman},
journal = {Archivum Mathematicum},
keywords = {$n$-absorbing ideals; strongly $n$-absorbing ideals; polynomial rings; content algebras; Dedekind-Mertens content formula; Prüfer domains; Gaussian algebras; Gaussian rings},
language = {eng},
number = {2},
pages = {71-78},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the Anderson-Badawi $\omega _\{R[X]\}(I[X])=\omega _R(I)$ conjecture},
url = {http://eudml.org/doc/281547},
volume = {052},
year = {2016},
}
TY - JOUR
AU - Nasehpour, Peyman
TI - On the Anderson-Badawi $\omega _{R[X]}(I[X])=\omega _R(I)$ conjecture
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 2
SP - 71
EP - 78
AB - Let $R$ be a commutative ring with an identity different from zero and $n$ be a positive integer. Anderson and Badawi, in their paper on $n$-absorbing ideals, define a proper ideal $I$ of a commutative ring $R$ to be an $n$-absorbing ideal of $R$, if whenever $x_1 \dots x_{n+1} \in I$ for $x_1, \ldots , x_{n+1} \in R$, then there are $n$ of the $x_i$’s whose product is in $I$ and conjecture that $\omega _{R[X]}(I[X])=\omega _R(I)$ for any ideal $I$ of an arbitrary ring $R$, where $\omega _R(I)= \min \lbrace n\colon I \text{is} \text{an} n\text{-absorbing} \text{ideal} \text{of} R\rbrace $. In the present paper, we use content formula techniques to prove that their conjecture is true, if one of the following conditions hold: The ring $R$ is a Prüfer domain. The ring $R$ is a Gaussian ring such that its additive group is torsion-free. The additive group of the ring $R$ is torsion-free and $I$ is a radical ideal of $R$.
LA - eng
KW - $n$-absorbing ideals; strongly $n$-absorbing ideals; polynomial rings; content algebras; Dedekind-Mertens content formula; Prüfer domains; Gaussian algebras; Gaussian rings
UR - http://eudml.org/doc/281547
ER -
References
top- Anderson, D.D., Camillo, V., 10.1080/00927879808826274, Comm. Algebra 26 (1998), 2265–2272. (1998) Zbl0915.13001MR1626606DOI10.1080/00927879808826274
- Anderson, D.D., Kang, B.G., 10.1006/jabr.1996.0110, J. Algebra 181 (1996), 82–94. (1996) Zbl0857.13017MR1382027DOI10.1006/jabr.1996.0110
- Anderson, D.F., Badawi, A., 10.1080/00927871003738998, Comm. Algebra 39 (2011), 1646–1672. (2011) Zbl1232.13001MR2821499DOI10.1080/00927871003738998
- Arnold, J.T., Gilmer, R., 10.1090/S0002-9939-1970-0252360-3, Proc. Amer. Math. Soc. 40 (1970), 556–562. (1970) MR0252360DOI10.1090/S0002-9939-1970-0252360-3
- Badawi, A., 10.1017/S0004972700039344, Bull. Austral. Math. Soc. 75 (2007), 417–429. (2007) Zbl1120.13004MR2331019DOI10.1017/S0004972700039344
- Bazzoni, S., Glaz, S., 10.1016/j.jalgebra.2007.01.004, J. Algebra 310 (1) (2007), 180–193. (2007) Zbl1118.13020MR2307788DOI10.1016/j.jalgebra.2007.01.004
- Bruns, W., Guerrieri, A., 10.1090/S0002-9939-99-04535-9, Proc. Amer. Math. Soc. 127 (3) (1999), 657–663. (1999) Zbl0915.13008MR1468185DOI10.1090/S0002-9939-99-04535-9
- Darani, A.Y., Puczyłowski, E.R., 10.1007/s00233-012-9417-z, Semigroup Forum 86 (2013), 83–91. (2013) Zbl1270.20064MR3016263DOI10.1007/s00233-012-9417-z
- Eakin, P., Silver, J., 10.1090/S0002-9947-1972-0309924-4, Trans. Amer. Math. Soc. 174 (1974), 425–449. (1974) MR0309924DOI10.1090/S0002-9947-1972-0309924-4
- Epstein, N., Shapiro, J., 10.1090/proc/12661, Proc. Amer. Math. Soc. 144 (2016), 917–924. (2016) Zbl1332.13018MR3447645DOI10.1090/proc/12661
- Fields, D.E., 10.1090/S0002-9939-1971-0271100-6, Proc. Amer. Math. Soc. 27 (3) (1971), 427–433. (1971) Zbl0219.13023MR0271100DOI10.1090/S0002-9939-1971-0271100-6
- Gilmer, R., 10.7146/math.scand.a-10833, Math. Scand. 20 (1967), 240–244. (1967) Zbl0167.03602MR0236159DOI10.7146/math.scand.a-10833
- Gilmer, R., Multiplicative Ideal Theory, Marcel Dekker, New York, 1972. (1972) Zbl0248.13001MR0427289
- Gilmer, R., Grams, A., Parker, T., Zero divisors in power series rings, J. Reine Angew. Math. 278 (1975), 145–164. (1975) Zbl0309.13009MR0387274
- Heinzer, W., Huneke, C., 10.1090/S0002-9939-98-04165-3, Proc. Amer. Math. Soc. 126 (1998), 1305–1309. (1998) MR1425124DOI10.1090/S0002-9939-98-04165-3
- Loper, K.A., Roitman, M., 10.1090/S0002-9939-04-07826-8, Proc. Amer. Math. Soc. 133 (2005), 1267–1271. (2005) Zbl1137.13301MR2111931DOI10.1090/S0002-9939-04-07826-8
- Nasehpour, P., Zero-divisors of content algebras, Arch. Math. (Brno) 46 (4) (2010). (2010) Zbl1240.13002MR2754063
- Nasehpour, P., 10.5666/KMJ.2011.51.1.037, Kyungpook Math. J. 51 (1) (2011), 37–42. (2011) Zbl1218.13005MR2784646DOI10.5666/KMJ.2011.51.1.037
- Nasehpour, P., Yassemi, S., -cancellation ideals, Kyungpook Math. J. 40 (2000), 259–263. (2000) Zbl1020.13002MR1803117
- Northcott, D.G., A generalization of a theorem on the content of polynomials, Proc. Cambridge Philos. Soc. 55 (1959), 282–288. (1959) Zbl0103.27102MR0110732
- Ohm, J., Rush, D.E., 10.7146/math.scand.a-11411, Math. Scand. 39 (1972), 49–68. (1972) Zbl0248.13013MR0344289DOI10.7146/math.scand.a-11411
- Prüfer, H., Untersuchungen über Teilbarkeitseigenschaften in Körpern, J. Reine Angew. Math. 168 (1932), 1–36. (1932) Zbl0004.34001MR1581355
- Rege, M.B., Chhawchharia, S., Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 168 (1) (1997), 14–17. (1997) Zbl0960.16038MR1442245
- Rush, D.E., 10.4153/CMB-1978-057-8, Canad. Math. Bull. 21 (3) (1978), 329–334. (1978) Zbl0441.13005MR0511581DOI10.4153/CMB-1978-057-8
- Tsang, H., Gauss’ Lemma, University of Chicago, Chicago, 1965, disseration. Zbl0266.13007MR2611536
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.