On the Anderson-Badawi conjecture

Peyman Nasehpour

Archivum Mathematicum (2016)

  • Volume: 052, Issue: 2, page 71-78
  • ISSN: 0044-8753

Abstract

top
Let be a commutative ring with an identity different from zero and be a positive integer. Anderson and Badawi, in their paper on -absorbing ideals, define a proper ideal of a commutative ring to be an -absorbing ideal of , if whenever for , then there are of the ’s whose product is in and conjecture that for any ideal of an arbitrary ring , where . In the present paper, we use content formula techniques to prove that their conjecture is true, if one of the following conditions hold: The ring is a Prüfer domain. The ring is a Gaussian ring such that its additive group is torsion-free. The additive group of the ring is torsion-free and is a radical ideal of .

How to cite

top

Nasehpour, Peyman. "On the Anderson-Badawi $\omega _{R[X]}(I[X])=\omega _R(I)$ conjecture." Archivum Mathematicum 052.2 (2016): 71-78. <http://eudml.org/doc/281547>.

@article{Nasehpour2016,
abstract = {Let $R$ be a commutative ring with an identity different from zero and $n$ be a positive integer. Anderson and Badawi, in their paper on $n$-absorbing ideals, define a proper ideal $I$ of a commutative ring $R$ to be an $n$-absorbing ideal of $R$, if whenever $x_1 \dots x_\{n+1\} \in I$ for $x_1, \ldots , x_\{n+1\} \in R$, then there are $n$ of the $x_i$’s whose product is in $I$ and conjecture that $\omega _\{R[X]\}(I[X])=\omega _R(I)$ for any ideal $I$ of an arbitrary ring $R$, where $\omega _R(I)= \min \lbrace n\colon I \text\{is\} \text\{an\} n\text\{-absorbing\} \text\{ideal\} \text\{of\} R\rbrace $. In the present paper, we use content formula techniques to prove that their conjecture is true, if one of the following conditions hold: The ring $R$ is a Prüfer domain. The ring $R$ is a Gaussian ring such that its additive group is torsion-free. The additive group of the ring $R$ is torsion-free and $I$ is a radical ideal of $R$.},
author = {Nasehpour, Peyman},
journal = {Archivum Mathematicum},
keywords = {$n$-absorbing ideals; strongly $n$-absorbing ideals; polynomial rings; content algebras; Dedekind-Mertens content formula; Prüfer domains; Gaussian algebras; Gaussian rings},
language = {eng},
number = {2},
pages = {71-78},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the Anderson-Badawi $\omega _\{R[X]\}(I[X])=\omega _R(I)$ conjecture},
url = {http://eudml.org/doc/281547},
volume = {052},
year = {2016},
}

TY - JOUR
AU - Nasehpour, Peyman
TI - On the Anderson-Badawi $\omega _{R[X]}(I[X])=\omega _R(I)$ conjecture
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 2
SP - 71
EP - 78
AB - Let $R$ be a commutative ring with an identity different from zero and $n$ be a positive integer. Anderson and Badawi, in their paper on $n$-absorbing ideals, define a proper ideal $I$ of a commutative ring $R$ to be an $n$-absorbing ideal of $R$, if whenever $x_1 \dots x_{n+1} \in I$ for $x_1, \ldots , x_{n+1} \in R$, then there are $n$ of the $x_i$’s whose product is in $I$ and conjecture that $\omega _{R[X]}(I[X])=\omega _R(I)$ for any ideal $I$ of an arbitrary ring $R$, where $\omega _R(I)= \min \lbrace n\colon I \text{is} \text{an} n\text{-absorbing} \text{ideal} \text{of} R\rbrace $. In the present paper, we use content formula techniques to prove that their conjecture is true, if one of the following conditions hold: The ring $R$ is a Prüfer domain. The ring $R$ is a Gaussian ring such that its additive group is torsion-free. The additive group of the ring $R$ is torsion-free and $I$ is a radical ideal of $R$.
LA - eng
KW - $n$-absorbing ideals; strongly $n$-absorbing ideals; polynomial rings; content algebras; Dedekind-Mertens content formula; Prüfer domains; Gaussian algebras; Gaussian rings
UR - http://eudml.org/doc/281547
ER -

References

top
  1. Anderson, D.D., Camillo, V., 10.1080/00927879808826274, Comm. Algebra 26 (1998), 2265–2272. (1998) Zbl0915.13001MR1626606DOI10.1080/00927879808826274
  2. Anderson, D.D., Kang, B.G., 10.1006/jabr.1996.0110, J. Algebra 181 (1996), 82–94. (1996) Zbl0857.13017MR1382027DOI10.1006/jabr.1996.0110
  3. Anderson, D.F., Badawi, A., 10.1080/00927871003738998, Comm. Algebra 39 (2011), 1646–1672. (2011) Zbl1232.13001MR2821499DOI10.1080/00927871003738998
  4. Arnold, J.T., Gilmer, R., 10.1090/S0002-9939-1970-0252360-3, Proc. Amer. Math. Soc. 40 (1970), 556–562. (1970) MR0252360DOI10.1090/S0002-9939-1970-0252360-3
  5. Badawi, A., 10.1017/S0004972700039344, Bull. Austral. Math. Soc. 75 (2007), 417–429. (2007) Zbl1120.13004MR2331019DOI10.1017/S0004972700039344
  6. Bazzoni, S., Glaz, S., 10.1016/j.jalgebra.2007.01.004, J. Algebra 310 (1) (2007), 180–193. (2007) Zbl1118.13020MR2307788DOI10.1016/j.jalgebra.2007.01.004
  7. Bruns, W., Guerrieri, A., 10.1090/S0002-9939-99-04535-9, Proc. Amer. Math. Soc. 127 (3) (1999), 657–663. (1999) Zbl0915.13008MR1468185DOI10.1090/S0002-9939-99-04535-9
  8. Darani, A.Y., Puczyłowski, E.R., 10.1007/s00233-012-9417-z, Semigroup Forum 86 (2013), 83–91. (2013) Zbl1270.20064MR3016263DOI10.1007/s00233-012-9417-z
  9. Eakin, P., Silver, J., 10.1090/S0002-9947-1972-0309924-4, Trans. Amer. Math. Soc. 174 (1974), 425–449. (1974) MR0309924DOI10.1090/S0002-9947-1972-0309924-4
  10. Epstein, N., Shapiro, J., 10.1090/proc/12661, Proc. Amer. Math. Soc. 144 (2016), 917–924. (2016) Zbl1332.13018MR3447645DOI10.1090/proc/12661
  11. Fields, D.E., 10.1090/S0002-9939-1971-0271100-6, Proc. Amer. Math. Soc. 27 (3) (1971), 427–433. (1971) Zbl0219.13023MR0271100DOI10.1090/S0002-9939-1971-0271100-6
  12. Gilmer, R., 10.7146/math.scand.a-10833, Math. Scand. 20 (1967), 240–244. (1967) Zbl0167.03602MR0236159DOI10.7146/math.scand.a-10833
  13. Gilmer, R., Multiplicative Ideal Theory, Marcel Dekker, New York, 1972. (1972) Zbl0248.13001MR0427289
  14. Gilmer, R., Grams, A., Parker, T., Zero divisors in power series rings, J. Reine Angew. Math. 278 (1975), 145–164. (1975) Zbl0309.13009MR0387274
  15. Heinzer, W., Huneke, C., 10.1090/S0002-9939-98-04165-3, Proc. Amer. Math. Soc. 126 (1998), 1305–1309. (1998) MR1425124DOI10.1090/S0002-9939-98-04165-3
  16. Loper, K.A., Roitman, M., 10.1090/S0002-9939-04-07826-8, Proc. Amer. Math. Soc. 133 (2005), 1267–1271. (2005) Zbl1137.13301MR2111931DOI10.1090/S0002-9939-04-07826-8
  17. Nasehpour, P., Zero-divisors of content algebras, Arch. Math. (Brno) 46 (4) (2010). (2010) Zbl1240.13002MR2754063
  18. Nasehpour, P., 10.5666/KMJ.2011.51.1.037, Kyungpook Math. J. 51 (1) (2011), 37–42. (2011) Zbl1218.13005MR2784646DOI10.5666/KMJ.2011.51.1.037
  19. Nasehpour, P., Yassemi, S., -cancellation ideals, Kyungpook Math. J. 40 (2000), 259–263. (2000) Zbl1020.13002MR1803117
  20. Northcott, D.G., A generalization of a theorem on the content of polynomials, Proc. Cambridge Philos. Soc. 55 (1959), 282–288. (1959) Zbl0103.27102MR0110732
  21. Ohm, J., Rush, D.E., 10.7146/math.scand.a-11411, Math. Scand. 39 (1972), 49–68. (1972) Zbl0248.13013MR0344289DOI10.7146/math.scand.a-11411
  22. Prüfer, H., Untersuchungen über Teilbarkeitseigenschaften in Körpern, J. Reine Angew. Math. 168 (1932), 1–36. (1932) Zbl0004.34001MR1581355
  23. Rege, M.B., Chhawchharia, S., Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 168 (1) (1997), 14–17. (1997) Zbl0960.16038MR1442245
  24. Rush, D.E., 10.4153/CMB-1978-057-8, Canad. Math. Bull. 21 (3) (1978), 329–334. (1978) Zbl0441.13005MR0511581DOI10.4153/CMB-1978-057-8
  25. Tsang, H., Gauss’ Lemma, University of Chicago, Chicago, 1965, disseration. Zbl0266.13007MR2611536

NotesEmbed ?

top

You must be logged in to post comments.