Zero-divisors of content algebras
Archivum Mathematicum (2010)
- Volume: 046, Issue: 4, page 237-249
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topNasehpour, Peyman. "Zero-divisors of content algebras." Archivum Mathematicum 046.4 (2010): 237-249. <http://eudml.org/doc/116489>.
@article{Nasehpour2010,
abstract = {In this article, we prove that in content extentions minimal primes extend to minimal primes and discuss zero-divisors of a content algebra over a ring who has Property (A) or whose set of zero-divisors is a finite union of prime ideals. We also examine the preservation of diameter of zero-divisor graph under content extensions.},
author = {Nasehpour, Peyman},
journal = {Archivum Mathematicum},
keywords = {content algebra; few zero-divisors; McCoy’s property; minimal prime; property (A); primal ring; zero-divisor graph; content algebra; few zero-divisors; McCoy's property; minimal prime; property (A); primal ring; zero-divisor graph},
language = {eng},
number = {4},
pages = {237-249},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Zero-divisors of content algebras},
url = {http://eudml.org/doc/116489},
volume = {046},
year = {2010},
}
TY - JOUR
AU - Nasehpour, Peyman
TI - Zero-divisors of content algebras
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 4
SP - 237
EP - 249
AB - In this article, we prove that in content extentions minimal primes extend to minimal primes and discuss zero-divisors of a content algebra over a ring who has Property (A) or whose set of zero-divisors is a finite union of prime ideals. We also examine the preservation of diameter of zero-divisor graph under content extensions.
LA - eng
KW - content algebra; few zero-divisors; McCoy’s property; minimal prime; property (A); primal ring; zero-divisor graph; content algebra; few zero-divisors; McCoy's property; minimal prime; property (A); primal ring; zero-divisor graph
UR - http://eudml.org/doc/116489
ER -
References
top- Anderson, D. D., Kan, B. G., 10.1006/jabr.1996.0110, J. Algebra 181 (1996), 82–94. (1996) MR1382027DOI10.1006/jabr.1996.0110
- Anderson, D. F., Livingston, P. S., 10.1006/jabr.1998.7840, J. Algebra 217 (1999), 434–447. (1999) Zbl0941.05062MR1700509DOI10.1006/jabr.1998.7840
- Arnold, J. T., Gilmer, R., 10.1090/S0002-9939-1970-0252360-3, Proc. Amer. Math. Soc. 40 (1970), 556–562. (1970) MR0252360DOI10.1090/S0002-9939-1970-0252360-3
- Axtell, M., Coykendall, J., Stickles, J., 10.1081/AGB-200063357, Comm. Algebra 6 (2005), 2043–2050. (2005) Zbl1088.13006MR2150859DOI10.1081/AGB-200063357
- Bruns, W., Guerrieri, A., 10.1090/S0002-9939-99-04535-9, Proc. Amer. Math. Soc. 127 (3) (1999), 657–663. (1999) Zbl0915.13008MR1468185DOI10.1090/S0002-9939-99-04535-9
- Dauns, J., 10.1080/00927879708825998, Comm. Algebra 25 (8) (1997), 2409–2435. (1997) Zbl0882.16001MR1459569DOI10.1080/00927879708825998
- Davis, E., 10.1090/S0002-9947-1964-0156868-2, Trans. Amer. Math. Soc. 110 (1964), 196–212. (1964) Zbl0128.26005MR0156868DOI10.1090/S0002-9947-1964-0156868-2
- Eakin, P., Silver, J., 10.1090/S0002-9947-1972-0309924-4, Trans. Amer. Math. Soc. 174 (1974), 425–449. (1974) MR0309924DOI10.1090/S0002-9947-1972-0309924-4
- Gilmer, R., Multiplicative Ideal Theory, Marcel Dekker, New York, 1972. (1972) Zbl0248.13001MR0427289
- Gilmer, R., Commutative Semigroup Rings, The University of Chicago Press, 1984. (1984) Zbl0566.20050MR0741678
- Heinzer, W., Huneke, C., 10.1090/S0002-9939-98-04165-3, Proc. Amer. Math. Soc. 126 (1998), 1305–1309. (1998) MR1425124DOI10.1090/S0002-9939-98-04165-3
- Huckaba, J. A., Commutative Rings with Zero Divisors, Marcel Dekker, 1988. (1988) Zbl0637.13001MR0938741
- Huckaba, J. A., Keller, J. M., 10.2140/pjm.1979.83.375, Pacific J. Math. 83 (1979), 375–379. (1979) Zbl0388.13001MR0557938DOI10.2140/pjm.1979.83.375
- Kaplansky, I., Commutative Rings, Allyn and Bacon, Boston, 1970. (1970) Zbl0203.34601MR0254021
- Loper, K. A., Roitman, M., 10.1090/S0002-9939-04-07826-8, Proc. Amer. Math. Soc. 133 (2005), 1267–1271. (2005) Zbl1137.13301MR2111931DOI10.1090/S0002-9939-04-07826-8
- Lucas, T. G., 10.1016/j.jalgebra.2006.01.019, J. Algebra 301 (2006), 174–193. (2006) Zbl1109.13006MR2230326DOI10.1016/j.jalgebra.2006.01.019
- McCoy, N. H., 10.2307/2303094, Amer. Math. Monthly 49 (1942), 286–29. (1942) Zbl0060.07703MR0006150DOI10.2307/2303094
- Northcott, D. G., 10.1017/S030500410003406X, Proc. Camb. Philos. Soc. 55 (1959), 282–288. (1959) Zbl0103.27102MR0110732DOI10.1017/S030500410003406X
- Ohm, J., Rush, D. E., Content modules and algebras, Math. Scand. 31 (1972), 49–68. (1972) Zbl0248.13013MR0344289
- Rush, D. E., 10.4153/CMB-1978-057-8, Canad. Math. Bull. 21 (3) (1978), 329–334. (1978) Zbl0441.13005MR0511581DOI10.4153/CMB-1978-057-8
- Tsang, H., Gauss’ Lemma, University of Chicago, Chicago, 1965, dissertation. (1965) MR2611536
- Zariski, O., Samuel, P., Commutative Algebra, Van Nostrand, New York, 1958. (1958) Zbl0081.26501MR0090581
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.