Zero-divisors of content algebras

Peyman Nasehpour

Archivum Mathematicum (2010)

  • Volume: 046, Issue: 4, page 237-249
  • ISSN: 0044-8753

Abstract

top
In this article, we prove that in content extentions minimal primes extend to minimal primes and discuss zero-divisors of a content algebra over a ring who has Property (A) or whose set of zero-divisors is a finite union of prime ideals. We also examine the preservation of diameter of zero-divisor graph under content extensions.

How to cite

top

Nasehpour, Peyman. "Zero-divisors of content algebras." Archivum Mathematicum 046.4 (2010): 237-249. <http://eudml.org/doc/116489>.

@article{Nasehpour2010,
abstract = {In this article, we prove that in content extentions minimal primes extend to minimal primes and discuss zero-divisors of a content algebra over a ring who has Property (A) or whose set of zero-divisors is a finite union of prime ideals. We also examine the preservation of diameter of zero-divisor graph under content extensions.},
author = {Nasehpour, Peyman},
journal = {Archivum Mathematicum},
keywords = {content algebra; few zero-divisors; McCoy’s property; minimal prime; property (A); primal ring; zero-divisor graph; content algebra; few zero-divisors; McCoy's property; minimal prime; property (A); primal ring; zero-divisor graph},
language = {eng},
number = {4},
pages = {237-249},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Zero-divisors of content algebras},
url = {http://eudml.org/doc/116489},
volume = {046},
year = {2010},
}

TY - JOUR
AU - Nasehpour, Peyman
TI - Zero-divisors of content algebras
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 4
SP - 237
EP - 249
AB - In this article, we prove that in content extentions minimal primes extend to minimal primes and discuss zero-divisors of a content algebra over a ring who has Property (A) or whose set of zero-divisors is a finite union of prime ideals. We also examine the preservation of diameter of zero-divisor graph under content extensions.
LA - eng
KW - content algebra; few zero-divisors; McCoy’s property; minimal prime; property (A); primal ring; zero-divisor graph; content algebra; few zero-divisors; McCoy's property; minimal prime; property (A); primal ring; zero-divisor graph
UR - http://eudml.org/doc/116489
ER -

References

top
  1. Anderson, D. D., Kan, B. G., 10.1006/jabr.1996.0110, J. Algebra 181 (1996), 82–94. (1996) MR1382027DOI10.1006/jabr.1996.0110
  2. Anderson, D. F., Livingston, P. S., 10.1006/jabr.1998.7840, J. Algebra 217 (1999), 434–447. (1999) Zbl0941.05062MR1700509DOI10.1006/jabr.1998.7840
  3. Arnold, J. T., Gilmer, R., 10.1090/S0002-9939-1970-0252360-3, Proc. Amer. Math. Soc. 40 (1970), 556–562. (1970) MR0252360DOI10.1090/S0002-9939-1970-0252360-3
  4. Axtell, M., Coykendall, J., Stickles, J., 10.1081/AGB-200063357, Comm. Algebra 6 (2005), 2043–2050. (2005) Zbl1088.13006MR2150859DOI10.1081/AGB-200063357
  5. Bruns, W., Guerrieri, A., 10.1090/S0002-9939-99-04535-9, Proc. Amer. Math. Soc. 127 (3) (1999), 657–663. (1999) Zbl0915.13008MR1468185DOI10.1090/S0002-9939-99-04535-9
  6. Dauns, J., 10.1080/00927879708825998, Comm. Algebra 25 (8) (1997), 2409–2435. (1997) Zbl0882.16001MR1459569DOI10.1080/00927879708825998
  7. Davis, E., 10.1090/S0002-9947-1964-0156868-2, Trans. Amer. Math. Soc. 110 (1964), 196–212. (1964) Zbl0128.26005MR0156868DOI10.1090/S0002-9947-1964-0156868-2
  8. Eakin, P., Silver, J., 10.1090/S0002-9947-1972-0309924-4, Trans. Amer. Math. Soc. 174 (1974), 425–449. (1974) MR0309924DOI10.1090/S0002-9947-1972-0309924-4
  9. Gilmer, R., Multiplicative Ideal Theory, Marcel Dekker, New York, 1972. (1972) Zbl0248.13001MR0427289
  10. Gilmer, R., Commutative Semigroup Rings, The University of Chicago Press, 1984. (1984) Zbl0566.20050MR0741678
  11. Heinzer, W., Huneke, C., 10.1090/S0002-9939-98-04165-3, Proc. Amer. Math. Soc. 126 (1998), 1305–1309. (1998) MR1425124DOI10.1090/S0002-9939-98-04165-3
  12. Huckaba, J. A., Commutative Rings with Zero Divisors, Marcel Dekker, 1988. (1988) Zbl0637.13001MR0938741
  13. Huckaba, J. A., Keller, J. M., 10.2140/pjm.1979.83.375, Pacific J. Math. 83 (1979), 375–379. (1979) Zbl0388.13001MR0557938DOI10.2140/pjm.1979.83.375
  14. Kaplansky, I., Commutative Rings, Allyn and Bacon, Boston, 1970. (1970) Zbl0203.34601MR0254021
  15. Loper, K. A., Roitman, M., 10.1090/S0002-9939-04-07826-8, Proc. Amer. Math. Soc. 133 (2005), 1267–1271. (2005) Zbl1137.13301MR2111931DOI10.1090/S0002-9939-04-07826-8
  16. Lucas, T. G., 10.1016/j.jalgebra.2006.01.019, J. Algebra 301 (2006), 174–193. (2006) Zbl1109.13006MR2230326DOI10.1016/j.jalgebra.2006.01.019
  17. McCoy, N. H., 10.2307/2303094, Amer. Math. Monthly 49 (1942), 286–29. (1942) Zbl0060.07703MR0006150DOI10.2307/2303094
  18. Northcott, D. G., 10.1017/S030500410003406X, Proc. Camb. Philos. Soc. 55 (1959), 282–288. (1959) Zbl0103.27102MR0110732DOI10.1017/S030500410003406X
  19. Ohm, J., Rush, D. E., Content modules and algebras, Math. Scand. 31 (1972), 49–68. (1972) Zbl0248.13013MR0344289
  20. Rush, D. E., 10.4153/CMB-1978-057-8, Canad. Math. Bull. 21 (3) (1978), 329–334. (1978) Zbl0441.13005MR0511581DOI10.4153/CMB-1978-057-8
  21. Tsang, H., Gauss’ Lemma, University of Chicago, Chicago, 1965, dissertation. (1965) MR2611536
  22. Zariski, O., Samuel, P., Commutative Algebra, Van Nostrand, New York, 1958. (1958) Zbl0081.26501MR0090581

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.