An SQP method for mathematical programs with complementarity constraints with strong convergence properties
Kybernetika (2016)
- Volume: 52, Issue: 2, page 169-208
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBenko, Matus, and Gfrerer, Helmut. "An SQP method for mathematical programs with complementarity constraints with strong convergence properties." Kybernetika 52.2 (2016): 169-208. <http://eudml.org/doc/281549>.
@article{Benko2016,
abstract = {We propose an SQP algorithm for mathematical programs with complementarity constraints which solves at each iteration a quadratic program with linear complementarity constraints. We demonstrate how strongly M-stationary solutions of this quadratic program can be obtained by an active set method without using enumeration techniques. We show that all limit points of the sequence of iterates generated by our SQP method are at least M-stationary.},
author = {Benko, Matus, Gfrerer, Helmut},
journal = {Kybernetika},
keywords = {SQP method; active set method; mathematical program with complementarity constraints; strong M-stationarity; SQP method; active set method; mathematical program with complementarity constraints; strong M-stationarity},
language = {eng},
number = {2},
pages = {169-208},
publisher = {Institute of Information Theory and Automation AS CR},
title = {An SQP method for mathematical programs with complementarity constraints with strong convergence properties},
url = {http://eudml.org/doc/281549},
volume = {52},
year = {2016},
}
TY - JOUR
AU - Benko, Matus
AU - Gfrerer, Helmut
TI - An SQP method for mathematical programs with complementarity constraints with strong convergence properties
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 2
SP - 169
EP - 208
AB - We propose an SQP algorithm for mathematical programs with complementarity constraints which solves at each iteration a quadratic program with linear complementarity constraints. We demonstrate how strongly M-stationary solutions of this quadratic program can be obtained by an active set method without using enumeration techniques. We show that all limit points of the sequence of iterates generated by our SQP method are at least M-stationary.
LA - eng
KW - SQP method; active set method; mathematical program with complementarity constraints; strong M-stationarity; SQP method; active set method; mathematical program with complementarity constraints; strong M-stationarity
UR - http://eudml.org/doc/281549
ER -
References
top- Anitescu, M., 10.1137/040606855, SIAM J. Optim. 16 (2005), 120-145. Zbl1099.65050MR2177772DOI10.1137/040606855
- Anitescu, M., 10.1137/s1052623402401221, SIAM J. Optim. 15 (2005), 1203-1236. Zbl1097.90050MR2178496DOI10.1137/s1052623402401221
- Biegler, L. T., Raghunathan, A. U., 10.1137/s1052623403429081, SIAM J. Optim. 15 (2005), 720-750. Zbl1077.90079MR2142858DOI10.1137/s1052623403429081
- DeMiguel, V., Friedlander, M. P., Nogales, F. J., Scholtes, S., 10.1137/04060754x, SIAM J. Optim. 16 (2005), 587-609. Zbl1122.90060MR2197997DOI10.1137/04060754x
- Facchinei, F., Jiang, H., Qi, L., 10.1007/s101070050048, Math. Programming 85 (1999), 107-134. Zbl0959.65079MR1689366DOI10.1007/s101070050048
- Fletcher, R., Practical Methods of Optimization 2: Constrained Optimization., John Wiley and Sons, Chichester 1981. MR0633058
- Fletcher, R., Leyffer, S., Solving mathematical programs with complementary constraints as nonlinear programs. Zbl1074.90044
- Fletcher, R., Leyffer, S., Ralph, D., Scholtes, S., 10.1137/s1052623402407382, SIAM J. Optim. 17 (2006), 259-286. Zbl1112.90098MR2219153DOI10.1137/s1052623402407382
- Fukushima, M., Tseng, P., 10.1137/s1052623499363232, SIAM J. Optim. 12 (2002), 724-739. Zbl1127.65034MR1884914DOI10.1137/s1052623499363232
- Gfrerer, H., 10.1137/130914449, SIAM J. Optim. 24 (2014), 898-931. Zbl1298.49021MR3217222DOI10.1137/130914449
- Giallombardo, G., Ralph, D., 10.1007/s10107-006-0020-5, Math. Programming 112 (2008), 335-369. Zbl1145.90073MR2361928DOI10.1007/s10107-006-0020-5
- Hu, X. M., Ralph, D., 10.1007/s10957-004-5154-0, J. Optim. Theory Appl. 123 (2004), 365-390. MR2101411DOI10.1007/s10957-004-5154-0
- Izmailov, A. F., Pogosyan, A. L., Solodov, M. V., 10.1007/s10589-010-9341-7, Computational Optim. Appl. 51 (2012), 199-221. Zbl1245.90124MR2872496DOI10.1007/s10589-010-9341-7
- Jiang, H., Ralph, D., 10.1023/A:1008696504163, Comput. Optim. Appl. 13 (1999), 25-59. MR1704113DOI10.1023/A:1008696504163
- Jiang, H., Ralph, D., 10.1023/A:1022945316191, Comput. Optim. Appl. 25 (2002), 123-150. Zbl1038.90100MR1996665DOI10.1023/A:1022945316191
- Kadrani, A., Dussault, J. P., Benchakroun, A., 10.1137/070705490, SIAM J. Optim. 20 (2009), 78-103. Zbl1187.65064MR2496894DOI10.1137/070705490
- Kanzow, C., Schwartz, A., 10.1137/100802487, SIAM J. Optim. 23 (2013), 770-798. Zbl1282.65069MR3045664DOI10.1137/100802487
- Kanzow, C., Schwartz, A., 10.1287/moor.2014.0667, Math. Oper. Res. 40 (2015), 2, 253-275. MR3320430DOI10.1287/moor.2014.0667
- Leyffer, S., DOI
- Leyffer, S., López-Calva, G., Nocedal, J., 10.1137/040621065, SIAM J. Optim. 17 (2006), 52-77. Zbl1112.90095MR2219144DOI10.1137/040621065
- Lin, G. H., Fukushima, M., 10.1007/s10479-004-5024-z, Ann. Oper. Res. 133 (2005), 63-84. Zbl1119.90058MR2119313DOI10.1007/s10479-004-5024-z
- Luo, Z. Q., Pang, J. S., Ralph, D., 10.1017/cbo9780511983658, Cambridge University Press, Cambridge, New York, Melbourne 1996. Zbl1139.90003MR1419501DOI10.1017/cbo9780511983658
- Luo, Z. Q., Pang, J. S., Ralph, D., 10.1007/978-1-4613-0307-7_9, In: Multilevel Optimization: Algorithms, Complexity, and Applications (A. Migdalas, P. Pardalos, and P. Värbrand, eds.), Kluwer Academic Publishers, Dordrecht 1998, pp. 209-229. Zbl0897.90184MR1605239DOI10.1007/978-1-4613-0307-7_9
- Luo, Z. Q., Pang, J. S., Ralph, D., Wu, S. Q., 10.1007/bf02592205, Math. Programming 75 (1996), 19-76. Zbl0870.90092MR1415093DOI10.1007/bf02592205
- Outrata, J. V., Kočvara, M., Zowe, J., 10.1007/978-1-4757-2825-5, Kluwer Academic Publishers, Dordrecht 1998. MR1641213DOI10.1007/978-1-4757-2825-5
- Powell, M. J. D., 10.1007/bfb0067703, In: Numerical Analysis Dundee 1977 (G. A. Watson, ed.), Lecture Notes in Mathematics 630, Springer, Berlin, 1978, pp. 144-157. Zbl0374.65032MR0483447DOI10.1007/bfb0067703
- Ralph, D., Wright, S. J., 10.1080/10556780410001709439, Optim. Methods Software 19 (2004), 527-556. Zbl1097.90054MR2095351DOI10.1080/10556780410001709439
- Scheel, H., Scholtes, S., 10.1287/moor.25.1.1.15213, Math. Oper. Res. 25 (2000), 1-22. Zbl1073.90557MR1854317DOI10.1287/moor.25.1.1.15213
- Scholtes, S., 10.1137/s1052623499361233, SIAM J. Optim. 11 (2001), 918-936. Zbl1010.90086MR1855214DOI10.1137/s1052623499361233
- Scholtes, S., Stöhr, M., 10.1137/s0363012996306121, SIAM J. Control Optim. 37 (1999), 617-652. Zbl0922.90128MR1670641DOI10.1137/s0363012996306121
- Steffensen, S., Ulbrich, M., 10.1137/090748883, SIAM J. Optim. 20 (2010), 2504-2539. MR2678403DOI10.1137/090748883
- Stein, O., 10.1007/s10107-010-0345-y, Math. Programming 131 (2012), 71-94. Zbl1250.90094MR2886141DOI10.1007/s10107-010-0345-y
- Stöhr, M., Nonsmooth Trust Region Methods and their Applications to Mathematical Programs with Equilibrium Constraints., Shaker-Verlag, Aachen 1999.
- Zhang, J., Liu, G., 10.1023/A:1011226232107, J. Glob. Optim. 19 (2001), 335-361. Zbl1049.90125MR1824769DOI10.1023/A:1011226232107
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.