On the cover problems of geometric theory

Nicos Karcanias; Dimitris Vafiadis

Kybernetika (1993)

  • Volume: 29, Issue: 6, page 547-562
  • ISSN: 0023-5954

How to cite

top

Karcanias, Nicos, and Vafiadis, Dimitris. "On the cover problems of geometric theory." Kybernetika 29.6 (1993): 547-562. <http://eudml.org/doc/28192>.

@article{Karcanias1993,
author = {Karcanias, Nicos, Vafiadis, Dimitris},
journal = {Kybernetika},
keywords = {geometric theory; disconjugacy; matrix pencils; invariant subspaces},
language = {eng},
number = {6},
pages = {547-562},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the cover problems of geometric theory},
url = {http://eudml.org/doc/28192},
volume = {29},
year = {1993},
}

TY - JOUR
AU - Karcanias, Nicos
AU - Vafiadis, Dimitris
TI - On the cover problems of geometric theory
JO - Kybernetika
PY - 1993
PB - Institute of Information Theory and Automation AS CR
VL - 29
IS - 6
SP - 547
EP - 562
LA - eng
KW - geometric theory; disconjugacy; matrix pencils; invariant subspaces
UR - http://eudml.org/doc/28192
ER -

References

top
  1. A. C. Antoulas, New results on the algebraic theory of linear systems: the solution of cover problems, Linear Algebra Appl. 50 (1983), 1-43. (1983) MR0699558
  2. E. Emre L. M. Silverman, K. Glover, Generalised dynamic covers for linear systems with applications to deterministic identification problems, IEEE Trans. Automat. Control AC-22 (1977), 26-35. (1977) MR0444165
  3. S. Jaffe, N. Karcanias, Matrix pencil characterisation of almost (A, B)-invariant subspaces: a classification of geometric concepts, Internat. J. Control 33(1981), 51-93. (1981) MR0607261
  4. N. Karcanias, Matrix pencil approach to geometric system theory, Proc. IEE 126 (1990), 585-590. (1990) MR0536439
  5. N. Karcanias, The global role of instrumentation in systems design and control, The concise Encyclopedia of Measurement and Instrumentation, Pergamon Press, to appear. 
  6. N. Karcanias, Proper invariant realisations of singular system problems, IEEE Trans. Automat. Control AC-35 (1990), 230-233. (1990) MR1038428
  7. N. Karcanias, B. Kouvaritakis, The output zeroing problem and its relationship to the invariant zero structure: a matrix pencil approach, Internat. J. Control 30 (1979), 395-415. (1979) Zbl0434.93018MR0543563
  8. N. Karcanias, C. Giannacopoulos, Necessary and sufficient conditions for zero assignment by constant squaring down, Linear Algebra Appl., Special issue on control theory 122/123/124 (1989), 415-446. (1989) MR1019995
  9. N. Karcanias, G. Kalogeropoulos, Geometric theory and feedback invariants of generalized linear systems: a matrix pencil approach, Circuits Systems Signal Process. 5 (1989), 3, 375-397. (1989) Zbl0689.93016MR1015178
  10. A. S. Morse, Minimal solutions to transfer matrix equations, IEEE Trans. Automat. Control AC-18(1973), 346-354. (1973) MR0395957
  11. R. C. Thompson, Interlacing inequalities for invariant factors, Linear Algebra Appl. 24 (1979), 1-31. (1979) Zbl0395.15003MR0524823
  12. J. C. Willems, Almost invariant subspaces: an approach to high gain feedback design - Part I, almost controlled invariant subspaces, IEEE Trans. Automat. Control AC-26 (1981), 235-252. (1981) MR0609263
  13. W. M. Wonham, Linear Multivariate Control: A Geometric Approach, Springer-Verlag, New York 1979. (1979) MR0522868
  14. W. M. Wonham, A. S. Morse, Feedback invariants for linear multivariable systems, Automatica 8 (1972), 93-100. (1972) MR0392060
  15. F. R. Gantmacher, The Theory of Matrices. Volume I, II, Chelsea, New York 1959. (1959) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.