Properties of reachability and almost reachability subspaces of implicit systems: The extension problem
Helen Eliopoulou; Nicos Karcanias
Kybernetika (1995)
- Volume: 31, Issue: 6, page 530-540
- ISSN: 0023-5954
Access Full Article
topHow to cite
topEliopoulou, Helen, and Karcanias, Nicos. "Properties of reachability and almost reachability subspaces of implicit systems: The extension problem." Kybernetika 31.6 (1995): 530-540. <http://eudml.org/doc/28437>.
@article{Eliopoulou1995,
author = {Eliopoulou, Helen, Karcanias, Nicos},
journal = {Kybernetika},
keywords = {controllability; linear; implicit control systems; reachability},
language = {eng},
number = {6},
pages = {530-540},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Properties of reachability and almost reachability subspaces of implicit systems: The extension problem},
url = {http://eudml.org/doc/28437},
volume = {31},
year = {1995},
}
TY - JOUR
AU - Eliopoulou, Helen
AU - Karcanias, Nicos
TI - Properties of reachability and almost reachability subspaces of implicit systems: The extension problem
JO - Kybernetika
PY - 1995
PB - Institute of Information Theory and Automation AS CR
VL - 31
IS - 6
SP - 530
EP - 540
LA - eng
KW - controllability; linear; implicit control systems; reachability
UR - http://eudml.org/doc/28437
ER -
References
top- D. J. Aplevich, Minimal representation of implicit linear systems, Automatica 21 (1985), 259-269. (1985) MR0793061
- D. Bernard, On singular implicit linear dynamical systems, SIAM J. Control Optim. 29 (1989), 612-633. (1989) MR0667644
- H. Eliopoulou, A Matrix Pencil Approach for the Study of Geometry and Feedback Invariants of Singular Systems, PhD Thesis, Control Eng. Centre, City University, London 1994. (1994)
- H. Eliopoulou, N. Karcanias, Geometric properties of the singular Segre characteristic at infinity of a pencil, In: Recent Advances in Mathematical Theory of Systems, Control Networks and Signal Processing II - Proceedings of the International Symposium MTNS 91, Tokyo, pp. 109-114. MR1198007
- H. Eliopoulou, N. Karcanias, Toeplitz matrix characterisation and computation of the fundamental subspaces of singular systems, In: Proceedings of Symposium of Implicit and Nonlinear Systems SINS'92, The Aut. & Robotics Res. Inst., University of Texas at Arlington 1992, pp. 216-221. (1992)
- H. Eliopoulou, N. Karcanias, On the study of the chains and spaces related to the Kronecker invariants via their generators. Part II: Elementary divisors, (submitted for publication).
- F. R. Gantmacher, Theory of Matrices, Chelsea, New York 1959. (1959) Zbl0085.01001
- S. Jaffe, N. Karcanias, Matrix pencil characterisation of almost (A, B) invariant subspaces: A classification of geometric concepts, Internat. J. Control 33 (1981), 51-93. (1981) MR0607261
- G. Kalogeropoulos, Matrix Pencils and Linear System Theory, PhD Thesis, Control Eng. Centre, City University, London 1985. (1985)
- N. Karcanias, Proper invariant realisation of singular system problems, IEEE Trans. Automat. Control AC-35 (1990), 2, 230-233. (1990) MR1038428
- N. Karcanias, Minimal bases of matrix pencils: Algebraic, Toeplitz structure and geometric properties, Linear Algebra Appl. 205-206 (1994), 205-206. (1994) Zbl0804.15008MR1276843
- N. Karcanias, The selection of input and output schemes for a system and the model projection problems, Kybernetika 30 (1994), 585-596. (1994) Zbl0827.93006MR1323661
- N. Karcanias, G. Kalogeropoulos, Geometric theory and feedback invariants of generalised linear systems: A matrix pencil approach, Circuits Systems Signal Process. 8 (1989), 375-397. (1989) MR1015178
- N. Karcanias, H. Eliopoulou, On the study of the chains and spaces related to the Kronecker invariants via their generators. Part I: Minimal bases for matrix pencils, (submitted for publication).
- N. Karcanias, G. Hayton, Generalised autonomouc dynamical systems, algebraic duality and geometric theory, In: Proc. IFAC VIII Trennial World Congress, Kyoto 1981. (1981) MR0735816
- N. Karcanias, D. Vafiadis, On the cover problems of geometric theory, Kybernetika 29 (1993), 547-562. (1993) Zbl0821.93026MR1264886
- F. Lewis, A tutorial on the geometric analysis of linear time invariant implicit systems, Automatica 28 (1992), 119-138. (1992) Zbl0745.93033MR1144115
- J. J. Loiseau, Some geometric considerations about the Kronecker normal form, Internat. J. Control 42 (1985), 6, 1411-1431. (1985) Zbl0609.93014MR0818345
- K. Ozcaldiran, Control of Descriptor Systems, PhD Thesis, School of Elec. Eng., Georgia Institute of Techn., Atlanta 1985. (1985)
- K. Ozcaldiran, A geometric characterisation of reachable and controllable subspaces of descriptor systems, Circuits Systems Signal Process. 5 (1986), 1, 37-48. (1986) MR0893726
- K. Ozcaldiran, F. L. Lewis, Generalised reachability subspaces for singular systems, SIAM J. Control Optim. 26 (1989), 495-510. (1989) MR0993283
- H. L. Trentelman, Almost Invariant Subspaces and High Gain Feedback, PhD Thesis, Department of Mathematics and Computing Science, Eindhoven University of Technology 1985. (1985) MR0879423
- J. C. Willems, Almost invariant subspaces: An approach to high gain feedback design, IEEE Trans. Automat. Control AC-26 (1981), 235-252; AC-27 (1982), 1071-1085. (1981) Zbl0463.93020
- W. M. Wonham, Linear Multivariable Control: A Geometric Approach, Second edition. Springer-Verlag, New York 1979. (1979) Zbl0424.93001MR0569358
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.