Properties of reachability and almost reachability subspaces of implicit systems: The extension problem

Helen Eliopoulou; Nicos Karcanias

Kybernetika (1995)

  • Volume: 31, Issue: 6, page 530-540
  • ISSN: 0023-5954

How to cite

top

Eliopoulou, Helen, and Karcanias, Nicos. "Properties of reachability and almost reachability subspaces of implicit systems: The extension problem." Kybernetika 31.6 (1995): 530-540. <http://eudml.org/doc/28437>.

@article{Eliopoulou1995,
author = {Eliopoulou, Helen, Karcanias, Nicos},
journal = {Kybernetika},
keywords = {controllability; linear; implicit control systems; reachability},
language = {eng},
number = {6},
pages = {530-540},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Properties of reachability and almost reachability subspaces of implicit systems: The extension problem},
url = {http://eudml.org/doc/28437},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Eliopoulou, Helen
AU - Karcanias, Nicos
TI - Properties of reachability and almost reachability subspaces of implicit systems: The extension problem
JO - Kybernetika
PY - 1995
PB - Institute of Information Theory and Automation AS CR
VL - 31
IS - 6
SP - 530
EP - 540
LA - eng
KW - controllability; linear; implicit control systems; reachability
UR - http://eudml.org/doc/28437
ER -

References

top
  1. D. J. Aplevich, Minimal representation of implicit linear systems, Automatica 21 (1985), 259-269. (1985) MR0793061
  2. D. Bernard, On singular implicit linear dynamical systems, SIAM J. Control Optim. 29 (1989), 612-633. (1989) MR0667644
  3. H. Eliopoulou, A Matrix Pencil Approach for the Study of Geometry and Feedback Invariants of Singular Systems, PhD Thesis, Control Eng. Centre, City University, London 1994. (1994) 
  4. H. Eliopoulou, N. Karcanias, Geometric properties of the singular Segre characteristic at infinity of a pencil, In: Recent Advances in Mathematical Theory of Systems, Control Networks and Signal Processing II - Proceedings of the International Symposium MTNS 91, Tokyo, pp. 109-114. MR1198007
  5. H. Eliopoulou, N. Karcanias, Toeplitz matrix characterisation and computation of the fundamental subspaces of singular systems, In: Proceedings of Symposium of Implicit and Nonlinear Systems SINS'92, The Aut. & Robotics Res. Inst., University of Texas at Arlington 1992, pp. 216-221. (1992) 
  6. H. Eliopoulou, N. Karcanias, On the study of the chains and spaces related to the Kronecker invariants via their generators. Part II: Elementary divisors, (submitted for publication). 
  7. F. R. Gantmacher, Theory of Matrices, Chelsea, New York 1959. (1959) Zbl0085.01001
  8. S. Jaffe, N. Karcanias, Matrix pencil characterisation of almost (A, B) invariant subspaces: A classification of geometric concepts, Internat. J. Control 33 (1981), 51-93. (1981) MR0607261
  9. G. Kalogeropoulos, Matrix Pencils and Linear System Theory, PhD Thesis, Control Eng. Centre, City University, London 1985. (1985) 
  10. N. Karcanias, Proper invariant realisation of singular system problems, IEEE Trans. Automat. Control AC-35 (1990), 2, 230-233. (1990) MR1038428
  11. N. Karcanias, Minimal bases of matrix pencils: Algebraic, Toeplitz structure and geometric properties, Linear Algebra Appl. 205-206 (1994), 205-206. (1994) Zbl0804.15008MR1276843
  12. N. Karcanias, The selection of input and output schemes for a system and the model projection problems, Kybernetika 30 (1994), 585-596. (1994) Zbl0827.93006MR1323661
  13. N. Karcanias, G. Kalogeropoulos, Geometric theory and feedback invariants of generalised linear systems: A matrix pencil approach, Circuits Systems Signal Process. 8 (1989), 375-397. (1989) MR1015178
  14. N. Karcanias, H. Eliopoulou, On the study of the chains and spaces related to the Kronecker invariants via their generators. Part I: Minimal bases for matrix pencils, (submitted for publication). 
  15. N. Karcanias, G. Hayton, Generalised autonomouc dynamical systems, algebraic duality and geometric theory, In: Proc. IFAC VIII Trennial World Congress, Kyoto 1981. (1981) MR0735816
  16. N. Karcanias, D. Vafiadis, On the cover problems of geometric theory, Kybernetika 29 (1993), 547-562. (1993) Zbl0821.93026MR1264886
  17. F. Lewis, A tutorial on the geometric analysis of linear time invariant implicit systems, Automatica 28 (1992), 119-138. (1992) Zbl0745.93033MR1144115
  18. J. J. Loiseau, Some geometric considerations about the Kronecker normal form, Internat. J. Control 42 (1985), 6, 1411-1431. (1985) Zbl0609.93014MR0818345
  19. K. Ozcaldiran, Control of Descriptor Systems, PhD Thesis, School of Elec. Eng., Georgia Institute of Techn., Atlanta 1985. (1985) 
  20. K. Ozcaldiran, A geometric characterisation of reachable and controllable subspaces of descriptor systems, Circuits Systems Signal Process. 5 (1986), 1, 37-48. (1986) MR0893726
  21. K. Ozcaldiran, F. L. Lewis, Generalised reachability subspaces for singular systems, SIAM J. Control Optim. 26 (1989), 495-510. (1989) MR0993283
  22. H. L. Trentelman, Almost Invariant Subspaces and High Gain Feedback, PhD Thesis, Department of Mathematics and Computing Science, Eindhoven University of Technology 1985. (1985) MR0879423
  23. J. C. Willems, Almost invariant subspaces: An approach to high gain feedback design, IEEE Trans. Automat. Control AC-26 (1981), 235-252; AC-27 (1982), 1071-1085. (1981) Zbl0463.93020
  24. W. M. Wonham, Linear Multivariable Control: A Geometric Approach, Second edition. Springer-Verlag, New York 1979. (1979) Zbl0424.93001MR0569358

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.