Riccati-like flows and matrix approximations

Uwe Helmke; Michael Prechtel; Mark A. Shayman

Kybernetika (1993)

  • Volume: 29, Issue: 6, page 563-582
  • ISSN: 0023-5954

How to cite

top

Helmke, Uwe, Prechtel, Michael, and Shayman, Mark A.. "Riccati-like flows and matrix approximations." Kybernetika 29.6 (1993): 563-582. <http://eudml.org/doc/28193>.

@article{Helmke1993,
author = {Helmke, Uwe, Prechtel, Michael, Shayman, Mark A.},
journal = {Kybernetika},
keywords = {best approximant; least squares problem; algebraic Riccati equation; symmetric matrices; gradient-like flows; dynamic Riccati equation; Riccati-like flows; phase portrait analysis; model reduction; linear control systems},
language = {eng},
number = {6},
pages = {563-582},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Riccati-like flows and matrix approximations},
url = {http://eudml.org/doc/28193},
volume = {29},
year = {1993},
}

TY - JOUR
AU - Helmke, Uwe
AU - Prechtel, Michael
AU - Shayman, Mark A.
TI - Riccati-like flows and matrix approximations
JO - Kybernetika
PY - 1993
PB - Institute of Information Theory and Automation AS CR
VL - 29
IS - 6
SP - 563
EP - 582
LA - eng
KW - best approximant; least squares problem; algebraic Riccati equation; symmetric matrices; gradient-like flows; dynamic Riccati equation; Riccati-like flows; phase portrait analysis; model reduction; linear control systems
UR - http://eudml.org/doc/28193
ER -

References

top
  1. G. Eckart, G. Young, The approximation of one matrix by another of lower rank, Psychometrika / (1936), 211-218. (1936) 
  2. G. H. Golub, C. Van Loan, An analysis of the total least squares problem, SIAM J. Numer. Anal. 17 (1980), 883-843. (1980) Zbl0468.65011MR0595451
  3. G. H. Golub A. Hoffmann, G. W. Stewart, A generalization of the Eckart-Young-Mirsky matrix approximation theorem, Linear Algebra Appl. 88/89 (1987), 317-327. (1987) MR0882452
  4. U. Helmke, J. B. Moore, Optimization and Dynamical Systems, Springer-Verlag, Berlin 1993. (1993) MR1299725
  5. U. Helmke, M. A. Shayman, Critical points of matrix least squares distance functions, Linear Algebra Appl., to appear. Zbl0816.15026MR1317470
  6. N. J. Higham, Computing a nearest symmetric positive semidefinite matrix, Linear Algebra Appl. 103 (1988), 103-118. (1988) Zbl0649.65026MR0943997
  7. B. De Moor, J. David, Total linear least squares and the algebraic Riccati equation, Systems Control Lett. 5 (1992), 329-337. (1992) Zbl0763.93085MR1180311
  8. J. B. Moore R. E. Mahony, U. Helmke, Recursive gradient algorithms for eigenvalue and singular value decomposition, SIAM J. Matrix Anal. Appl., to appear. MR1282700

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.