Some new problems in spectral optimization
Giuseppe Buttazzo; Bozhidar Velichkov
Banach Center Publications (2014)
- Volume: 101, Issue: 1, page 19-35
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topGiuseppe Buttazzo, and Bozhidar Velichkov. "Some new problems in spectral optimization." Banach Center Publications 101.1 (2014): 19-35. <http://eudml.org/doc/282034>.
@article{GiuseppeButtazzo2014,
abstract = {We present some new problems in spectral optimization. The first one consists in determining the best domain for the Dirichlet energy (or for the first eigenvalue) of the metric Laplacian, and we consider in particular Riemannian or Finsler manifolds, Carnot-Carathéodory spaces, Gaussian spaces. The second one deals with the optimal shape of a graph when the minimization cost is of spectral type. The third one is the optimization problem for a Schrödinger potential in suitable classes.},
author = {Giuseppe Buttazzo, Bozhidar Velichkov},
journal = {Banach Center Publications},
keywords = {shape optimization; eigenvalues; Sobolev spaces; metric spaces; optimal graphs; optimal potentials},
language = {eng},
number = {1},
pages = {19-35},
title = {Some new problems in spectral optimization},
url = {http://eudml.org/doc/282034},
volume = {101},
year = {2014},
}
TY - JOUR
AU - Giuseppe Buttazzo
AU - Bozhidar Velichkov
TI - Some new problems in spectral optimization
JO - Banach Center Publications
PY - 2014
VL - 101
IS - 1
SP - 19
EP - 35
AB - We present some new problems in spectral optimization. The first one consists in determining the best domain for the Dirichlet energy (or for the first eigenvalue) of the metric Laplacian, and we consider in particular Riemannian or Finsler manifolds, Carnot-Carathéodory spaces, Gaussian spaces. The second one deals with the optimal shape of a graph when the minimization cost is of spectral type. The third one is the optimization problem for a Schrödinger potential in suitable classes.
LA - eng
KW - shape optimization; eigenvalues; Sobolev spaces; metric spaces; optimal graphs; optimal potentials
UR - http://eudml.org/doc/282034
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.