top
We establish the Euler-Lagrange inclusion of a nonsmooth integral functional defined on Orlicz-Sobolev spaces. This result is achieved through variational techniques in nonsmooth analysis and an integral representation formula for the Clarke generalized gradient of locally Lipschitz integral functionals defined on Orlicz spaces.
Hôǹg Thái Nguyêñ, and Dariusz Pączka. "The Euler-Lagrange inclusion in Orlicz-Sobolev spaces." Banach Center Publications 101.1 (2014): 127-131. <http://eudml.org/doc/282077>.
@article{HôǹgTháiNguyêñ2014, abstract = {We establish the Euler-Lagrange inclusion of a nonsmooth integral functional defined on Orlicz-Sobolev spaces. This result is achieved through variational techniques in nonsmooth analysis and an integral representation formula for the Clarke generalized gradient of locally Lipschitz integral functionals defined on Orlicz spaces.}, author = {Hôǹg Thái Nguyêñ, Dariusz Pączka}, journal = {Banach Center Publications}, keywords = {Euler-Lagrange condition; Orlicz-Sobolev space; nonsmooth analysis; variational inclusions}, language = {eng}, number = {1}, pages = {127-131}, title = {The Euler-Lagrange inclusion in Orlicz-Sobolev spaces}, url = {http://eudml.org/doc/282077}, volume = {101}, year = {2014}, }
TY - JOUR AU - Hôǹg Thái Nguyêñ AU - Dariusz Pączka TI - The Euler-Lagrange inclusion in Orlicz-Sobolev spaces JO - Banach Center Publications PY - 2014 VL - 101 IS - 1 SP - 127 EP - 131 AB - We establish the Euler-Lagrange inclusion of a nonsmooth integral functional defined on Orlicz-Sobolev spaces. This result is achieved through variational techniques in nonsmooth analysis and an integral representation formula for the Clarke generalized gradient of locally Lipschitz integral functionals defined on Orlicz spaces. LA - eng KW - Euler-Lagrange condition; Orlicz-Sobolev space; nonsmooth analysis; variational inclusions UR - http://eudml.org/doc/282077 ER -