# Structure of Cesàro function spaces: a survey

Sergey V. Astashkin; Lech Maligranda

Banach Center Publications (2014)

- Volume: 102, Issue: 1, page 13-40
- ISSN: 0137-6934

## Access Full Article

top## Abstract

top## How to cite

topSergey V. Astashkin, and Lech Maligranda. "Structure of Cesàro function spaces: a survey." Banach Center Publications 102.1 (2014): 13-40. <http://eudml.org/doc/282267>.

@article{SergeyV2014,

abstract = {Geometric structure of Cesàro function spaces $Ces_p(I)$, where I = [0,1] and [0,∞), is investigated. Among other matters we present a description of their dual spaces, characterize the sets of all q ∈ [1,∞] such that $Ces_p[0,1]$ contains isomorphic and complemented copies of $l_q$-spaces, show that Cesàro function spaces fail the fixed point property, give a description of subspaces generated by Rademacher functions in spaces $Ces_p[0,1]$.},

author = {Sergey V. Astashkin, Lech Maligranda},

journal = {Banach Center Publications},

keywords = {Cesàro function spaces; Copson function spaces; -copies; type; cotype; Rademacher functions; weak Banach-Saks property; interpolation},

language = {eng},

number = {1},

pages = {13-40},

title = {Structure of Cesàro function spaces: a survey},

url = {http://eudml.org/doc/282267},

volume = {102},

year = {2014},

}

TY - JOUR

AU - Sergey V. Astashkin

AU - Lech Maligranda

TI - Structure of Cesàro function spaces: a survey

JO - Banach Center Publications

PY - 2014

VL - 102

IS - 1

SP - 13

EP - 40

AB - Geometric structure of Cesàro function spaces $Ces_p(I)$, where I = [0,1] and [0,∞), is investigated. Among other matters we present a description of their dual spaces, characterize the sets of all q ∈ [1,∞] such that $Ces_p[0,1]$ contains isomorphic and complemented copies of $l_q$-spaces, show that Cesàro function spaces fail the fixed point property, give a description of subspaces generated by Rademacher functions in spaces $Ces_p[0,1]$.

LA - eng

KW - Cesàro function spaces; Copson function spaces; -copies; type; cotype; Rademacher functions; weak Banach-Saks property; interpolation

UR - http://eudml.org/doc/282267

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.