Structure of Cesàro function spaces: a survey
Sergey V. Astashkin; Lech Maligranda
Banach Center Publications (2014)
- Volume: 102, Issue: 1, page 13-40
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topSergey V. Astashkin, and Lech Maligranda. "Structure of Cesàro function spaces: a survey." Banach Center Publications 102.1 (2014): 13-40. <http://eudml.org/doc/282267>.
@article{SergeyV2014,
abstract = {Geometric structure of Cesàro function spaces $Ces_p(I)$, where I = [0,1] and [0,∞), is investigated. Among other matters we present a description of their dual spaces, characterize the sets of all q ∈ [1,∞] such that $Ces_p[0,1]$ contains isomorphic and complemented copies of $l_q$-spaces, show that Cesàro function spaces fail the fixed point property, give a description of subspaces generated by Rademacher functions in spaces $Ces_p[0,1]$.},
author = {Sergey V. Astashkin, Lech Maligranda},
journal = {Banach Center Publications},
keywords = {Cesàro function spaces; Copson function spaces; -copies; type; cotype; Rademacher functions; weak Banach-Saks property; interpolation},
language = {eng},
number = {1},
pages = {13-40},
title = {Structure of Cesàro function spaces: a survey},
url = {http://eudml.org/doc/282267},
volume = {102},
year = {2014},
}
TY - JOUR
AU - Sergey V. Astashkin
AU - Lech Maligranda
TI - Structure of Cesàro function spaces: a survey
JO - Banach Center Publications
PY - 2014
VL - 102
IS - 1
SP - 13
EP - 40
AB - Geometric structure of Cesàro function spaces $Ces_p(I)$, where I = [0,1] and [0,∞), is investigated. Among other matters we present a description of their dual spaces, characterize the sets of all q ∈ [1,∞] such that $Ces_p[0,1]$ contains isomorphic and complemented copies of $l_q$-spaces, show that Cesàro function spaces fail the fixed point property, give a description of subspaces generated by Rademacher functions in spaces $Ces_p[0,1]$.
LA - eng
KW - Cesàro function spaces; Copson function spaces; -copies; type; cotype; Rademacher functions; weak Banach-Saks property; interpolation
UR - http://eudml.org/doc/282267
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.