# Interpolation of quasicontinuous functions

Joan Cerdà; Joaquim Martín; Pilar Silvestre

Banach Center Publications (2011)

- Volume: 95, Issue: 1, page 281-286
- ISSN: 0137-6934

## Access Full Article

top## Abstract

top## How to cite

topJoan Cerdà, Joaquim Martín, and Pilar Silvestre. "Interpolation of quasicontinuous functions." Banach Center Publications 95.1 (2011): 281-286. <http://eudml.org/doc/282488>.

@article{JoanCerdà2011,

abstract = {If C is a capacity on a measurable space, we prove that the restriction of the K-functional $K(t,f;L^p(C),L^∞(C))$ to quasicontinuous functions f ∈ QC is equivalent to
$K(t,f;L^p(C) ∩ QC, L^∞(C) ∩ QC)$.
We apply this result to identify the interpolation space $(L^\{p₀,q₀\}(C) ∩ QC,L^\{p₁,q₁\}(C) ∩ QC)_\{θ,q\}$.},

author = {Joan Cerdà, Joaquim Martín, Pilar Silvestre},

journal = {Banach Center Publications},

keywords = {capacity; Lorentz spaces; interpolation; quasicontinuous function},

language = {eng},

number = {1},

pages = {281-286},

title = {Interpolation of quasicontinuous functions},

url = {http://eudml.org/doc/282488},

volume = {95},

year = {2011},

}

TY - JOUR

AU - Joan Cerdà

AU - Joaquim Martín

AU - Pilar Silvestre

TI - Interpolation of quasicontinuous functions

JO - Banach Center Publications

PY - 2011

VL - 95

IS - 1

SP - 281

EP - 286

AB - If C is a capacity on a measurable space, we prove that the restriction of the K-functional $K(t,f;L^p(C),L^∞(C))$ to quasicontinuous functions f ∈ QC is equivalent to
$K(t,f;L^p(C) ∩ QC, L^∞(C) ∩ QC)$.
We apply this result to identify the interpolation space $(L^{p₀,q₀}(C) ∩ QC,L^{p₁,q₁}(C) ∩ QC)_{θ,q}$.

LA - eng

KW - capacity; Lorentz spaces; interpolation; quasicontinuous function

UR - http://eudml.org/doc/282488

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.