On Eberlein compactifications of metrizable spaces

Takashi Kimura; Kazuhiko Morishita

Fundamenta Mathematicae (2002)

  • Volume: 171, Issue: 3, page 223-234
  • ISSN: 0016-2736

Abstract

top
We prove that, for every finite-dimensional metrizable space, there exists a compactification that is Eberlein compact and preserves both the covering dimension and weight.

How to cite

top

Takashi Kimura, and Kazuhiko Morishita. "On Eberlein compactifications of metrizable spaces." Fundamenta Mathematicae 171.3 (2002): 223-234. <http://eudml.org/doc/282665>.

@article{TakashiKimura2002,
abstract = {We prove that, for every finite-dimensional metrizable space, there exists a compactification that is Eberlein compact and preserves both the covering dimension and weight.},
author = {Takashi Kimura, Kazuhiko Morishita},
journal = {Fundamenta Mathematicae},
keywords = {Eberlein compactification; dimension; weight},
language = {eng},
number = {3},
pages = {223-234},
title = {On Eberlein compactifications of metrizable spaces},
url = {http://eudml.org/doc/282665},
volume = {171},
year = {2002},
}

TY - JOUR
AU - Takashi Kimura
AU - Kazuhiko Morishita
TI - On Eberlein compactifications of metrizable spaces
JO - Fundamenta Mathematicae
PY - 2002
VL - 171
IS - 3
SP - 223
EP - 234
AB - We prove that, for every finite-dimensional metrizable space, there exists a compactification that is Eberlein compact and preserves both the covering dimension and weight.
LA - eng
KW - Eberlein compactification; dimension; weight
UR - http://eudml.org/doc/282665
ER -

NotesEmbed ?

top

You must be logged in to post comments.