Generalized E-algebras via λ-calculus I

Rüdiger Göbel; Saharon Shelah

Fundamenta Mathematicae (2006)

  • Volume: 192, Issue: 2, page 155-181
  • ISSN: 0016-2736

Abstract

top
An R-algebra A is called an E(R)-algebra if the canonical homomorphism from A to the endomorphism algebra E n d R A of the R-module R A , taking any a ∈ A to the right multiplication a r E n d R A by a, is an isomorphism of algebras. In this case R A is called an E(R)-module. There is a proper class of examples constructed in [4]. E(R)-algebras arise naturally in various topics of algebra. So it is not surprising that they were investigated thoroughly in the last decades; see [3, 5, 7, 8, 10, 13, 14, 15, 18, 19]. Despite some efforts ([14, 5]) it remained an open question whether proper generalized E(R)-algebras exist. These are R-algebras A isomorphic to E n d R A but not under the above canonical isomorphism, so not E(R)-algebras. This question was raised about 30 years ago (for R = ℤ) by Schultz [21] (see also Vinsonhaler [24]). It originates from Problem 45 in Fuchs [9], that asks for a characterization of the rings A for which A E n d A (as rings). We answer Schultz’s question, thus contributing a large class of rings for Fuchs’ Problem 45 which are not E-rings. Let R be a commutative ring with an element p ∈ R such that the additive group R⁺ is p-torsion-free and p-reduced (equivalently p is not a zero-divisor and n ω p R = 0 ). As explained in the introduction we assume that either | R | < 2 or R⁺ is free (see Definition 1.1). The main tool is an interesting connection between λ-calculus (used in theoretical computer science) and algebra. It seems reasonable to divide the work into two parts; in this paper we work in V = L (Gödel’s universe) where stronger combinatorial methods make the final arguments more transparent. The proof based entirely on ordinary set theory (the axioms of ZFC) will appear in a subsequent paper [12]. However the general strategy will be the same, but the combinatorial arguments will utilize a prediction principle that holds under ZFC.

How to cite

top

Rüdiger Göbel, and Saharon Shelah. "Generalized E-algebras via λ-calculus I." Fundamenta Mathematicae 192.2 (2006): 155-181. <http://eudml.org/doc/282756>.

@article{RüdigerGöbel2006,
abstract = {An R-algebra A is called an E(R)-algebra if the canonical homomorphism from A to the endomorphism algebra $End_\{R\}A$ of the R-module $_\{R\}A$, taking any a ∈ A to the right multiplication $a_\{r\} ∈ End_\{R\}A$ by a, is an isomorphism of algebras. In this case $_\{R\}A$ is called an E(R)-module. There is a proper class of examples constructed in [4]. E(R)-algebras arise naturally in various topics of algebra. So it is not surprising that they were investigated thoroughly in the last decades; see [3, 5, 7, 8, 10, 13, 14, 15, 18, 19]. Despite some efforts ([14, 5]) it remained an open question whether proper generalized E(R)-algebras exist. These are R-algebras A isomorphic to $End_\{R\}A$ but not under the above canonical isomorphism, so not E(R)-algebras. This question was raised about 30 years ago (for R = ℤ) by Schultz [21] (see also Vinsonhaler [24]). It originates from Problem 45 in Fuchs [9], that asks for a characterization of the rings A for which $A ≅ End_\{ℤ\}A$ (as rings). We answer Schultz’s question, thus contributing a large class of rings for Fuchs’ Problem 45 which are not E-rings. Let R be a commutative ring with an element p ∈ R such that the additive group R⁺ is p-torsion-free and p-reduced (equivalently p is not a zero-divisor and $⋂_\{n∈ω\} pⁿR = 0$). As explained in the introduction we assume that either $|R| < 2^\{ℵ₀\}$ or R⁺ is free (see Definition 1.1). The main tool is an interesting connection between λ-calculus (used in theoretical computer science) and algebra. It seems reasonable to divide the work into two parts; in this paper we work in V = L (Gödel’s universe) where stronger combinatorial methods make the final arguments more transparent. The proof based entirely on ordinary set theory (the axioms of ZFC) will appear in a subsequent paper [12]. However the general strategy will be the same, but the combinatorial arguments will utilize a prediction principle that holds under ZFC.},
author = {Rüdiger Göbel, Saharon Shelah},
journal = {Fundamenta Mathematicae},
keywords = {-rings; -algebras; endomorphism rings},
language = {eng},
number = {2},
pages = {155-181},
title = {Generalized E-algebras via λ-calculus I},
url = {http://eudml.org/doc/282756},
volume = {192},
year = {2006},
}

TY - JOUR
AU - Rüdiger Göbel
AU - Saharon Shelah
TI - Generalized E-algebras via λ-calculus I
JO - Fundamenta Mathematicae
PY - 2006
VL - 192
IS - 2
SP - 155
EP - 181
AB - An R-algebra A is called an E(R)-algebra if the canonical homomorphism from A to the endomorphism algebra $End_{R}A$ of the R-module $_{R}A$, taking any a ∈ A to the right multiplication $a_{r} ∈ End_{R}A$ by a, is an isomorphism of algebras. In this case $_{R}A$ is called an E(R)-module. There is a proper class of examples constructed in [4]. E(R)-algebras arise naturally in various topics of algebra. So it is not surprising that they were investigated thoroughly in the last decades; see [3, 5, 7, 8, 10, 13, 14, 15, 18, 19]. Despite some efforts ([14, 5]) it remained an open question whether proper generalized E(R)-algebras exist. These are R-algebras A isomorphic to $End_{R}A$ but not under the above canonical isomorphism, so not E(R)-algebras. This question was raised about 30 years ago (for R = ℤ) by Schultz [21] (see also Vinsonhaler [24]). It originates from Problem 45 in Fuchs [9], that asks for a characterization of the rings A for which $A ≅ End_{ℤ}A$ (as rings). We answer Schultz’s question, thus contributing a large class of rings for Fuchs’ Problem 45 which are not E-rings. Let R be a commutative ring with an element p ∈ R such that the additive group R⁺ is p-torsion-free and p-reduced (equivalently p is not a zero-divisor and $⋂_{n∈ω} pⁿR = 0$). As explained in the introduction we assume that either $|R| < 2^{ℵ₀}$ or R⁺ is free (see Definition 1.1). The main tool is an interesting connection between λ-calculus (used in theoretical computer science) and algebra. It seems reasonable to divide the work into two parts; in this paper we work in V = L (Gödel’s universe) where stronger combinatorial methods make the final arguments more transparent. The proof based entirely on ordinary set theory (the axioms of ZFC) will appear in a subsequent paper [12]. However the general strategy will be the same, but the combinatorial arguments will utilize a prediction principle that holds under ZFC.
LA - eng
KW - -rings; -algebras; endomorphism rings
UR - http://eudml.org/doc/282756
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.