Normal numbers and the Borel hierarchy

Verónica Becher; Pablo Ariel Heiber; Theodore A. Slaman

Fundamenta Mathematicae (2014)

  • Volume: 226, Issue: 1, page 63-77
  • ISSN: 0016-2736

Abstract

top
We show that the set of absolutely normal numbers is Π⁰₃-complete in the Borel hierarchy of subsets of real numbers. Similarly, the set of absolutely normal numbers is Π⁰₃-complete in the effective Borel hierarchy.

How to cite

top

Verónica Becher, Pablo Ariel Heiber, and Theodore A. Slaman. "Normal numbers and the Borel hierarchy." Fundamenta Mathematicae 226.1 (2014): 63-77. <http://eudml.org/doc/282949>.

@article{VerónicaBecher2014,
abstract = {We show that the set of absolutely normal numbers is Π⁰₃-complete in the Borel hierarchy of subsets of real numbers. Similarly, the set of absolutely normal numbers is Π⁰₃-complete in the effective Borel hierarchy.},
author = {Verónica Becher, Pablo Ariel Heiber, Theodore A. Slaman},
journal = {Fundamenta Mathematicae},
keywords = {normal numbers; Borel hierarchy; descriptive set theory},
language = {eng},
number = {1},
pages = {63-77},
title = {Normal numbers and the Borel hierarchy},
url = {http://eudml.org/doc/282949},
volume = {226},
year = {2014},
}

TY - JOUR
AU - Verónica Becher
AU - Pablo Ariel Heiber
AU - Theodore A. Slaman
TI - Normal numbers and the Borel hierarchy
JO - Fundamenta Mathematicae
PY - 2014
VL - 226
IS - 1
SP - 63
EP - 77
AB - We show that the set of absolutely normal numbers is Π⁰₃-complete in the Borel hierarchy of subsets of real numbers. Similarly, the set of absolutely normal numbers is Π⁰₃-complete in the effective Borel hierarchy.
LA - eng
KW - normal numbers; Borel hierarchy; descriptive set theory
UR - http://eudml.org/doc/282949
ER -

NotesEmbed ?

top

You must be logged in to post comments.