# Injective comodules and Landweber exact homology theories

Fundamenta Mathematicae (2007)

- Volume: 196, Issue: 3, page 237-251
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topMark Hovey. "Injective comodules and Landweber exact homology theories." Fundamenta Mathematicae 196.3 (2007): 237-251. <http://eudml.org/doc/283079>.

@article{MarkHovey2007,

abstract = {We classify the indecomposable injective E(n)⁎E(n)-comodules, where E(n) is the Johnson-Wilson homology theory. They are suspensions of the $J_\{n,r\} = E(n)⁎(M_\{r\}E(r))$, where 0 ≤ r ≤ n, with the endomorphism ring of $J_\{n,r\}$ being $\widehat\{E(r)\}*\widehat\{E(r)\}$, where $\widehat\{E(r)\}$ denotes the completion of E(r).},

author = {Mark Hovey},

journal = {Fundamenta Mathematicae},

keywords = {Injective comodules; Johnson–Wilson homology theory; Landweber exact homology theory},

language = {eng},

number = {3},

pages = {237-251},

title = {Injective comodules and Landweber exact homology theories},

url = {http://eudml.org/doc/283079},

volume = {196},

year = {2007},

}

TY - JOUR

AU - Mark Hovey

TI - Injective comodules and Landweber exact homology theories

JO - Fundamenta Mathematicae

PY - 2007

VL - 196

IS - 3

SP - 237

EP - 251

AB - We classify the indecomposable injective E(n)⁎E(n)-comodules, where E(n) is the Johnson-Wilson homology theory. They are suspensions of the $J_{n,r} = E(n)⁎(M_{r}E(r))$, where 0 ≤ r ≤ n, with the endomorphism ring of $J_{n,r}$ being $\widehat{E(r)}*\widehat{E(r)}$, where $\widehat{E(r)}$ denotes the completion of E(r).

LA - eng

KW - Injective comodules; Johnson–Wilson homology theory; Landweber exact homology theory

UR - http://eudml.org/doc/283079

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.