Injective comodules and Landweber exact homology theories
Fundamenta Mathematicae (2007)
- Volume: 196, Issue: 3, page 237-251
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topMark Hovey. "Injective comodules and Landweber exact homology theories." Fundamenta Mathematicae 196.3 (2007): 237-251. <http://eudml.org/doc/283079>.
@article{MarkHovey2007,
abstract = {We classify the indecomposable injective E(n)⁎E(n)-comodules, where E(n) is the Johnson-Wilson homology theory. They are suspensions of the $J_\{n,r\} = E(n)⁎(M_\{r\}E(r))$, where 0 ≤ r ≤ n, with the endomorphism ring of $J_\{n,r\}$ being $\widehat\{E(r)\}*\widehat\{E(r)\}$, where $\widehat\{E(r)\}$ denotes the completion of E(r).},
author = {Mark Hovey},
journal = {Fundamenta Mathematicae},
keywords = {Injective comodules; Johnson–Wilson homology theory; Landweber exact homology theory},
language = {eng},
number = {3},
pages = {237-251},
title = {Injective comodules and Landweber exact homology theories},
url = {http://eudml.org/doc/283079},
volume = {196},
year = {2007},
}
TY - JOUR
AU - Mark Hovey
TI - Injective comodules and Landweber exact homology theories
JO - Fundamenta Mathematicae
PY - 2007
VL - 196
IS - 3
SP - 237
EP - 251
AB - We classify the indecomposable injective E(n)⁎E(n)-comodules, where E(n) is the Johnson-Wilson homology theory. They are suspensions of the $J_{n,r} = E(n)⁎(M_{r}E(r))$, where 0 ≤ r ≤ n, with the endomorphism ring of $J_{n,r}$ being $\widehat{E(r)}*\widehat{E(r)}$, where $\widehat{E(r)}$ denotes the completion of E(r).
LA - eng
KW - Injective comodules; Johnson–Wilson homology theory; Landweber exact homology theory
UR - http://eudml.org/doc/283079
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.