Displaying similar documents to “Injective comodules and Landweber exact homology theories”

Noncommutative Hodge-to-de Rham spectral sequence and the Heegaard Floer homology of double covers

Robert Lipshitz, David Treumann (2016)

Journal of the European Mathematical Society

Similarity:

Let A be a dg algebra over 𝔽 2 and let M be a dg A -bimodule. We show that under certain technical hypotheses on A , a noncommutative analog of the Hodge-to-de Rham spectral sequence starts at the Hochschild homology of the derived tensor product M A L M and converges to the Hochschild homology of M . We apply this result to bordered Heegaard Floer theory, giving spectral sequences associated to Heegaard Floer homology groups of certain branched and unbranched double covers.

Topology of Fatou components for endomorphisms of k : linking with the Green’s current

Suzanne Lynch Hruska, Roland K. W. Roeder (2010)

Fundamenta Mathematicae

Similarity:

Little is known about the global topology of the Fatou set U(f) for holomorphic endomorphisms f : k k , when k >1. Classical theory describes U(f) as the complement in k of the support of a dynamically defined closed positive (1,1) current. Given any closed positive (1,1) current S on k , we give a definition of linking number between closed loops in k s u p p S and the current S. It has the property that if lk(γ,S) ≠ 0, then γ represents a non-trivial homology element in H ( k s u p p S ) . As an application, we use...

Algebraic K -theory of the first Morava K -theory

Christian Ausoni, John Rognes (2012)

Journal of the European Mathematical Society

Similarity:

For a prime p 5 , we compute the algebraic K -theory modulo p and v 1 of the mod p Adams summand, using topological cyclic homology. On the way, we evaluate its modulo p and v 1 topological Hochschild homology. Using a localization sequence, we also compute the K -theory modulo p and v 1 of the first Morava K -theory.

Rational BV-algebra in string topology

Yves Félix, Jean-Claude Thomas (2008)

Bulletin de la Société Mathématique de France

Similarity:

Let M be a 1-connected closed manifold of dimension m and L M be the space of free loops on M . M.Chas and D.Sullivan defined a structure of BV-algebra on the singular homology of L M , H * ( L M ; k ) . When the ring of coefficients is a field of characteristic zero, we prove that there exists a BV-algebra structure on the Hochschild cohomology H H * ( C * ( M ) ; C * ( M ) ) which extends the canonical structure of Gerstenhaber algebra. We construct then an isomorphism of BV-algebras between H H * ( C * ( M ) ; C * ( M ) ) and the shifted homology H * + m ( L M ; k ) . We also prove...

Homology of origamis with symmetries

Carlos Matheus, Jean-Christophe Yoccoz, David Zmiaikou (2014)

Annales de l’institut Fourier

Similarity:

Given an origami (square-tiled surface) M with automorphism group Γ , we compute the decomposition of the first homology group of M into isotypic Γ -submodules. Through the action of the affine group of M on the homology group, we deduce some consequences for the multiplicities of the Lyapunov exponents of the Kontsevich-Zorich cocycle. We also construct and study several families of interesting origamis illustrating our results.

Rabinowitz Floer homology and symplectic homology

Kai Cieliebak, Urs Frauenfelder, Alexandru Oancea (2010)

Annales scientifiques de l'École Normale Supérieure

Similarity:

The first two authors have recently defined Rabinowitz Floer homology groups R F H * ( M , W ) associated to a separating exact embedding of a contact manifold ( M , ξ ) into a symplectic manifold ( W , ω ) . These depend only on the bounded component V of W M . We construct a long exact sequence in which symplectic cohomology of V maps to symplectic homology of V , which in turn maps to Rabinowitz Floer homology R F H * ( M , W ) , which then maps to symplectic cohomology of V . We compute R F H * ( S T * L , T * L ) , where S T * L is the unit cosphere bundle of a closed...

Hochschild (co)homology of Yoneda algebras of reconstruction algebras of type 𝐀 1

Bo Hou, Yanhong Guo (2015)

Czechoslovak Mathematical Journal

Similarity:

The reconstruction algebra is a generalization of the preprojective algebra, and plays important roles in algebraic geometry and commutative algebra. We consider the homological property of this class of algebras by calculating the Hochschild homology and Hochschild cohomology. Let Λ t be the Yoneda algebra of a reconstruction algebra of type 𝐀 1 over a field . I n t h i s p a p e r , a m i n i m a l p r o j e c t i v e b i m o d u l e r e s o l u t i o n o f t i s c o n s t r u c t e d , a n d t h e -dimensions of all Hochschild homology and cohomology groups of Λ t are calculated explicitly.

A Riemann-Roch theorem for dg algebras

François Petit (2013)

Bulletin de la Société Mathématique de France

Similarity:

Given a smooth proper dg algebra A , a perfect dg A -module M and an endomorphism f of M , we define the Hochschild class of the pair ( M , f ) with values in the Hochschild homology of the algebra A . Our main result is a Riemann-Roch type formula involving the convolution of two such Hochschild classes.

Annihilators of local homology modules

Shahram Rezaei (2019)

Czechoslovak Mathematical Journal

Similarity:

Let ( R , 𝔪 ) be a local ring, 𝔞 an ideal of R and M a nonzero Artinian R -module of Noetherian dimension n with hd ( 𝔞 , M ) = n . We determine the annihilator of the top local homology module H n 𝔞 ( M ) . In fact, we prove that Ann R ( H n 𝔞 ( M ) ) = Ann R ( N ( 𝔞 , M ) ) , where N ( 𝔞 , M ) denotes the smallest submodule of M such that hd ( 𝔞 , M / N ( 𝔞 , M ) ) < n . As a consequence, it follows that for a complete local ring ( R , 𝔪 ) all associated primes of H n 𝔞 ( M ) are minimal.

Taylor towers of symmetric and exterior powers

Brenda Johnson, Randy McCarthy (2008)

Fundamenta Mathematicae

Similarity:

We study the Taylor towers of the nth symmetric and exterior power functors, Spⁿ and Λⁿ. We obtain a description of the layers of the Taylor towers, D k S p and D k Λ , in terms of the first terms in the Taylor towers of S p t and Λ t for t < n. The homology of these first terms is related to the stable derived functors (in the sense of Dold and Puppe) of S p t and Λ t . We use stable derived functor calculations of Dold and Puppe to determine the lowest nontrivial homology groups for D k S p and D k Λ .

On (Co)homology of triangular Banach algebras

Mohammad Sal Moslehian (2005)

Banach Center Publications

Similarity:

Suppose that A and B are unital Banach algebras with units 1 A and 1 B , respectively, M is a unital Banach A,B-module, = A M 0 B is the triangular Banach algebra, X is a unital -bimodule, X A A = 1 A X 1 A , X B B = 1 B X 1 B , X A B = 1 A X 1 B and X B A = 1 B X 1 A . Applying two nice long exact sequences related to A, B, , X, X A A , X B B , X A B and X B A we establish some results on (co)homology of triangular Banach algebras.

Coxeter elements for vanishing cycles of types  A 1 2  and  D 1 2

Kyoji Saito (2011)

Annales de l’institut Fourier

Similarity:

We introduce two entire functions f A 1 2 and f D 1 2 in two variables. Both of them have only two critical values 0 and 1 , and the associated maps C 2 C define topologically locally trivial fibrations over C { 0 , 1 } . All critical points in the singular fibers over 0 and 1 are ordinary double points, and the associated vanishing cycles span the middle homology group of the general fiber, whose intersection diagram forms bi-partitely decomposed infinite quivers of type A 1 2 and D 1 2 , respectively. Coxeter elements...

Batalin-Vilkovisky algebra structures on Hochschild cohomology

Luc Menichi (2009)

Bulletin de la Société Mathématique de France

Similarity:

Let M be any compact simply-connected oriented d -dimensional smooth manifold and let 𝔽 be any field. We show that the Gerstenhaber algebra structure on the Hochschild cohomology on the singular cochains of M , H H * ( S * ( M ) , S * ( M ) ) , extends to a Batalin-Vilkovisky algebra. Such Batalin-Vilkovisky algebra was conjectured to exist and is expected to be isomorphic to the Batalin-Vilkovisky algebra on the free loop space homology on M , H * + d ( L M ) introduced by Chas and Sullivan. We also show that the negative cyclic...

Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant

Gwénaël Massuyeau (2012)

Bulletin de la Société Mathématique de France

Similarity:

Let Σ be a compact connected oriented surface with one boundary component, and let π be the fundamental group of Σ . The Johnson filtration is a decreasing sequence of subgroups of the Torelli group of Σ , whose k -th term consists of the self-homeomorphisms of Σ that act trivially at the level of the k -th nilpotent quotient of π . Morita defined a homomorphism from the k -th term of the Johnson filtration to the third homology group of the k -th nilpotent quotient of π . In this paper, we...

The Salvetti complex and the little cubes

Dai Tamaki (2012)

Journal of the European Mathematical Society

Similarity:

For a real central arrangement 𝒜 , Salvetti introduced a construction of a finite complex Sal ( 𝒜 ) which is homotopy equivalent to the complement of the complexified arrangement in [Sal87]. For the braid arrangement 𝒜 k - 1 , the Salvetti complex Sal ( 𝒜 k - 1 ) serves as a good combinatorial model for the homotopy type of the configuration space F ( , k ) of k points in C , which is homotopy equivalent to the space C 2 ( k ) of k little 2 -cubes. Motivated by the importance of little cubes in homotopy theory, especially in...

Homotopy decompositions of orbit spaces and the Webb conjecture

Jolanta Słomińska (2001)

Fundamenta Mathematicae

Similarity:

Let p be a prime number. We prove that if G is a compact Lie group with a non-trivial p-subgroup, then the orbit space ( B p ( G ) ) / G of the classifying space of the category associated to the G-poset p ( G ) of all non-trivial elementary abelian p-subgroups of G is contractible. This gives, for every G-CW-complex X each of whose isotropy groups contains a non-trivial p-subgroup, a decomposition of X/G as a homotopy colimit of the functor X E / ( N E . . . N E ) defined over the poset ( s d p ( G ) ) / G , where sd is the barycentric subdivision....

On the uniform behaviour of the Frobenius closures of ideals

K. Khashyarmanesh (2007)

Colloquium Mathematicae

Similarity:

Let be a proper ideal of a commutative Noetherian ring R of prime characteristic p and let Q() be the smallest positive integer m such that ( F ) [ p m ] = [ p m ] , where F is the Frobenius closure of . This paper is concerned with the question whether the set Q ( [ p m ] ) : m is bounded. We give an affirmative answer in the case that the ideal is generated by an u.s.d-sequence c₁,..., cₙ for R such that (i) the map R / j = 1 n R c j R / j = 1 n R c ² j induced by multiplication by c₁...cₙ is an R-monomorphism; (ii) for all a s s ( c j , . . . , c j ) , c₁/1,..., cₙ/1 is a R -filter...

Hardness of embedding simplicial complexes in d

Jiří Matoušek, Martin Tancer, Uli Wagner (2011)

Journal of the European Mathematical Society

Similarity:

Let 𝙴𝙼𝙱𝙴𝙳 k d be the following algorithmic problem: Given a finite simplicial complex K of dimension at most k , does there exist a (piecewise linear) embedding of K into d ? Known results easily imply polynomiality of 𝙴𝙼𝙱𝙴𝙳 k 2 ( k = 1 , 2 ; the case k = 1 , d = 2 is graph planarity) and of 𝙴𝙼𝙱𝙴𝙳 k 2 k for all k 3 . We show that the celebrated result of Novikov on the algorithmic unsolvability of recognizing the 5-sphere implies that 𝙴𝙼𝙱𝙴𝙳 d d and 𝙴𝙼𝙱𝙴𝙳 ( d - 1 ) d are undecidable for each d 5 . Our main result is NP-hardness of 𝙴𝙼𝙱𝙴𝙳 2 4 and, more generally, of 𝙴𝙼𝙱𝙴𝙳 k d for all...

Augmentation quotients for Burnside rings of generalized dihedral groups

Shan Chang (2016)

Czechoslovak Mathematical Journal

Similarity:

Let H be a finite abelian group of odd order, 𝒟 be its generalized dihedral group, i.e., the semidirect product of C 2 acting on H by inverting elements, where C 2 is the cyclic group of order two. Let Ω ( 𝒟 ) be the Burnside ring of 𝒟 , Δ ( 𝒟 ) be the augmentation ideal of Ω ( 𝒟 ) . Denote by Δ n ( 𝒟 ) and Q n ( 𝒟 ) the n th power of Δ ( 𝒟 ) and the n th consecutive quotient group Δ n ( 𝒟 ) / Δ n + 1 ( 𝒟 ) , respectively. This paper provides an explicit -basis for Δ n ( 𝒟 ) and determines the isomorphism class of Q n ( 𝒟 ) for each positive integer n .

Strongly ( 𝒯 , n ) -coherent rings, ( 𝒯 , n ) -semihereditary rings and ( 𝒯 , n ) -regular rings

Zhanmin Zhu (2020)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒯 be a weak torsion class of left R -modules and n a positive integer. A left R -module M is called ( 𝒯 , n ) -injective if Ext R n ( C , M ) = 0 for each ( 𝒯 , n + 1 ) -presented left R -module C ; a right R -module M is called ( 𝒯 , n ) -flat if Tor n R ( M , C ) = 0 for each ( 𝒯 , n + 1 ) -presented left R -module C ; a left R -module M is called ( 𝒯 , n ) -projective if Ext R n ( M , N ) = 0 for each ( 𝒯 , n ) -injective left R -module N ; the ring R is called strongly ( 𝒯 , n ) -coherent if whenever 0 K P C 0 is exact, where C is ( 𝒯 , n + 1 ) -presented and P is finitely generated projective, then K is ( 𝒯 , n ) -projective; the ring R is called...

P-injective group rings

Liang Shen (2020)

Czechoslovak Mathematical Journal

Similarity:

A ring R is called right P-injective if every homomorphism from a principal right ideal of R to R R can be extended to a homomorphism from R R to R R . Let R be a ring and G a group. Based on a result of Nicholson and Yousif, we prove that the group ring RG is right P-injective if and only if (a) R is right P-injective; (b) G is locally finite; and (c) for any finite subgroup H of G and any principal right ideal I of RH , if f Hom R ( I R , R R ) , then there exists g Hom R ( RH R , R R ) such that g | I = f . Similarly, we also obtain equivalent...