On confluently graph-like compacta

Lex G. Oversteegen; Janusz R. Prajs

Fundamenta Mathematicae (2003)

  • Volume: 178, Issue: 2, page 109-127
  • ISSN: 0016-2736

Abstract

top
For any class 𝒦 of compacta and any compactum X we say that: (a) X is confluently 𝒦-representable if X is homeomorphic to the inverse limit of an inverse sequence of members of 𝒦 with confluent bonding mappings, and (b) X is confluently 𝒦-like provided that X admits, for every ε >0, a confluent ε-mapping onto a member of 𝒦. The symbol 𝕃ℂ stands for the class of all locally connected compacta. It is proved in this paper that for each compactum X and each family 𝒦 of graphs, X is confluently 𝒦-representable if and only if X is confluently 𝒦-like. We also show that for any compactum the properties of: (1) being confluently graph-representable, and (2) being 1-dimensional and confluently 𝕃ℂ-like, are equivalent. Consequently, all locally connected curves are confluently graph-representable. We also conclude that all confluently arc-like continua are homeomorphic to inverse limits of arcs with open bonding mappings, and all confluently tree-like continua are absolute retracts for hereditarily unicoherent continua.

How to cite

top

Lex G. Oversteegen, and Janusz R. Prajs. "On confluently graph-like compacta." Fundamenta Mathematicae 178.2 (2003): 109-127. <http://eudml.org/doc/283219>.

@article{LexG2003,
abstract = {For any class 𝒦 of compacta and any compactum X we say that: (a) X is confluently 𝒦-representable if X is homeomorphic to the inverse limit of an inverse sequence of members of 𝒦 with confluent bonding mappings, and (b) X is confluently 𝒦-like provided that X admits, for every ε >0, a confluent ε-mapping onto a member of 𝒦. The symbol 𝕃ℂ stands for the class of all locally connected compacta. It is proved in this paper that for each compactum X and each family 𝒦 of graphs, X is confluently 𝒦-representable if and only if X is confluently 𝒦-like. We also show that for any compactum the properties of: (1) being confluently graph-representable, and (2) being 1-dimensional and confluently 𝕃ℂ-like, are equivalent. Consequently, all locally connected curves are confluently graph-representable. We also conclude that all confluently arc-like continua are homeomorphic to inverse limits of arcs with open bonding mappings, and all confluently tree-like continua are absolute retracts for hereditarily unicoherent continua.},
author = {Lex G. Oversteegen, Janusz R. Prajs},
journal = {Fundamenta Mathematicae},
keywords = {Confluent mapping; -mapping; confluently graph-like continua; confluently graph-representable continua},
language = {eng},
number = {2},
pages = {109-127},
title = {On confluently graph-like compacta},
url = {http://eudml.org/doc/283219},
volume = {178},
year = {2003},
}

TY - JOUR
AU - Lex G. Oversteegen
AU - Janusz R. Prajs
TI - On confluently graph-like compacta
JO - Fundamenta Mathematicae
PY - 2003
VL - 178
IS - 2
SP - 109
EP - 127
AB - For any class 𝒦 of compacta and any compactum X we say that: (a) X is confluently 𝒦-representable if X is homeomorphic to the inverse limit of an inverse sequence of members of 𝒦 with confluent bonding mappings, and (b) X is confluently 𝒦-like provided that X admits, for every ε >0, a confluent ε-mapping onto a member of 𝒦. The symbol 𝕃ℂ stands for the class of all locally connected compacta. It is proved in this paper that for each compactum X and each family 𝒦 of graphs, X is confluently 𝒦-representable if and only if X is confluently 𝒦-like. We also show that for any compactum the properties of: (1) being confluently graph-representable, and (2) being 1-dimensional and confluently 𝕃ℂ-like, are equivalent. Consequently, all locally connected curves are confluently graph-representable. We also conclude that all confluently arc-like continua are homeomorphic to inverse limits of arcs with open bonding mappings, and all confluently tree-like continua are absolute retracts for hereditarily unicoherent continua.
LA - eng
KW - Confluent mapping; -mapping; confluently graph-like continua; confluently graph-representable continua
UR - http://eudml.org/doc/283219
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.