The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces
Fundamenta Mathematicae (2004)
- Volume: 182, Issue: 1, page 41-52
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topMichael G. Charalambous. "The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces." Fundamenta Mathematicae 182.1 (2004): 41-52. <http://eudml.org/doc/283341>.
@article{MichaelG2004,
abstract = {We prove that every Baire subspace Y of c₀(Γ) has a dense $G_δ$ metrizable subspace X with dim X ≤ dim Y. We also prove that the Kimura-Morishita Eberlein compactifications of metrizable spaces preserve large inductive dimension. The proofs rely on new and old results concerning the dimension of uniform spaces.},
author = {Michael G. Charalambous},
journal = {Fundamenta Mathematicae},
keywords = {Eberlein compact and metrizable space; covering and inductive dimension of topological and uniform spaces},
language = {eng},
number = {1},
pages = {41-52},
title = {The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces},
url = {http://eudml.org/doc/283341},
volume = {182},
year = {2004},
}
TY - JOUR
AU - Michael G. Charalambous
TI - The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces
JO - Fundamenta Mathematicae
PY - 2004
VL - 182
IS - 1
SP - 41
EP - 52
AB - We prove that every Baire subspace Y of c₀(Γ) has a dense $G_δ$ metrizable subspace X with dim X ≤ dim Y. We also prove that the Kimura-Morishita Eberlein compactifications of metrizable spaces preserve large inductive dimension. The proofs rely on new and old results concerning the dimension of uniform spaces.
LA - eng
KW - Eberlein compact and metrizable space; covering and inductive dimension of topological and uniform spaces
UR - http://eudml.org/doc/283341
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.