The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces

Michael G. Charalambous

Fundamenta Mathematicae (2004)

  • Volume: 182, Issue: 1, page 41-52
  • ISSN: 0016-2736

Abstract

top
We prove that every Baire subspace Y of c₀(Γ) has a dense G δ metrizable subspace X with dim X ≤ dim Y. We also prove that the Kimura-Morishita Eberlein compactifications of metrizable spaces preserve large inductive dimension. The proofs rely on new and old results concerning the dimension of uniform spaces.

How to cite

top

Michael G. Charalambous. "The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces." Fundamenta Mathematicae 182.1 (2004): 41-52. <http://eudml.org/doc/283341>.

@article{MichaelG2004,
abstract = {We prove that every Baire subspace Y of c₀(Γ) has a dense $G_δ$ metrizable subspace X with dim X ≤ dim Y. We also prove that the Kimura-Morishita Eberlein compactifications of metrizable spaces preserve large inductive dimension. The proofs rely on new and old results concerning the dimension of uniform spaces.},
author = {Michael G. Charalambous},
journal = {Fundamenta Mathematicae},
keywords = {Eberlein compact and metrizable space; covering and inductive dimension of topological and uniform spaces},
language = {eng},
number = {1},
pages = {41-52},
title = {The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces},
url = {http://eudml.org/doc/283341},
volume = {182},
year = {2004},
}

TY - JOUR
AU - Michael G. Charalambous
TI - The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces
JO - Fundamenta Mathematicae
PY - 2004
VL - 182
IS - 1
SP - 41
EP - 52
AB - We prove that every Baire subspace Y of c₀(Γ) has a dense $G_δ$ metrizable subspace X with dim X ≤ dim Y. We also prove that the Kimura-Morishita Eberlein compactifications of metrizable spaces preserve large inductive dimension. The proofs rely on new and old results concerning the dimension of uniform spaces.
LA - eng
KW - Eberlein compact and metrizable space; covering and inductive dimension of topological and uniform spaces
UR - http://eudml.org/doc/283341
ER -

NotesEmbed ?

top

You must be logged in to post comments.