Hausdorff dimension of scale-sparse Weierstrass-type functions
Fundamenta Mathematicae (2011)
- Volume: 213, Issue: 1, page 1-13
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topAbel Carvalho. "Hausdorff dimension of scale-sparse Weierstrass-type functions." Fundamenta Mathematicae 213.1 (2011): 1-13. <http://eudml.org/doc/283355>.
@article{AbelCarvalho2011,
abstract = {The aim of this paper is to calculate (deterministically) the Hausdorff dimension of the scale-sparse Weierstrass-type functions $W_s(x): = ∑_\{j ≥ 1\} ρ^\{-γ^js\} g(ρ^\{γ^j\}x + θ_j)$, where ρ > 1, γ > 1 and 0 < s < 1, and g is a periodic Lipschitz function satisfying some additional appropriate conditions.},
author = {Abel Carvalho},
journal = {Fundamenta Mathematicae},
keywords = {Hausdorff dimension; Hausdorff measure; -set; Weierstrass function},
language = {eng},
number = {1},
pages = {1-13},
title = {Hausdorff dimension of scale-sparse Weierstrass-type functions},
url = {http://eudml.org/doc/283355},
volume = {213},
year = {2011},
}
TY - JOUR
AU - Abel Carvalho
TI - Hausdorff dimension of scale-sparse Weierstrass-type functions
JO - Fundamenta Mathematicae
PY - 2011
VL - 213
IS - 1
SP - 1
EP - 13
AB - The aim of this paper is to calculate (deterministically) the Hausdorff dimension of the scale-sparse Weierstrass-type functions $W_s(x): = ∑_{j ≥ 1} ρ^{-γ^js} g(ρ^{γ^j}x + θ_j)$, where ρ > 1, γ > 1 and 0 < s < 1, and g is a periodic Lipschitz function satisfying some additional appropriate conditions.
LA - eng
KW - Hausdorff dimension; Hausdorff measure; -set; Weierstrass function
UR - http://eudml.org/doc/283355
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.