Asymptotic properties of the minimum contrast estimators for projections of inhomogeneous space-time shot-noise Cox processes

Jiří Dvořák; Michaela Prokešová

Applications of Mathematics (2016)

  • Volume: 61, Issue: 4, page 387-411
  • ISSN: 0862-7940

Abstract

top
We consider a flexible class of space-time point process models—inhomogeneous shot-noise Cox point processes. They are suitable for modelling clustering phenomena, e.g. in epidemiology, seismology, etc. The particular structure of the model enables the use of projections to the spatial and temporal domain. They are used to formulate a step-wise estimation method to estimate different parts of the model separately. In the first step, the Poisson likelihood approach is used to estimate the inhomogeneity parameters. In the second and third steps, the minimum contrast estimation based on K -functions of the projected processes is used to estimate the interaction parameters. We study the asymptotic properties of the resulting estimators and formulate a set of conditions sufficient for establishing consistency and asymptotic normality of the estimators under the increasing domain asymptotics.

How to cite

top

Dvořák, Jiří, and Prokešová, Michaela. "Asymptotic properties of the minimum contrast estimators for projections of inhomogeneous space-time shot-noise Cox processes." Applications of Mathematics 61.4 (2016): 387-411. <http://eudml.org/doc/283404>.

@article{Dvořák2016,
abstract = {We consider a flexible class of space-time point process models—inhomogeneous shot-noise Cox point processes. They are suitable for modelling clustering phenomena, e.g. in epidemiology, seismology, etc. The particular structure of the model enables the use of projections to the spatial and temporal domain. They are used to formulate a step-wise estimation method to estimate different parts of the model separately. In the first step, the Poisson likelihood approach is used to estimate the inhomogeneity parameters. In the second and third steps, the minimum contrast estimation based on $K$-functions of the projected processes is used to estimate the interaction parameters. We study the asymptotic properties of the resulting estimators and formulate a set of conditions sufficient for establishing consistency and asymptotic normality of the estimators under the increasing domain asymptotics.},
author = {Dvořák, Jiří, Prokešová, Michaela},
journal = {Applications of Mathematics},
keywords = {space-time point process; shot-noise Cox process; minimum contrast estimation; projection process; increasing domain asymptotics; space-time point process; shot-noise Cox process; minimum contrast estimation; projection process; increasing domain asymptotics},
language = {eng},
number = {4},
pages = {387-411},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Asymptotic properties of the minimum contrast estimators for projections of inhomogeneous space-time shot-noise Cox processes},
url = {http://eudml.org/doc/283404},
volume = {61},
year = {2016},
}

TY - JOUR
AU - Dvořák, Jiří
AU - Prokešová, Michaela
TI - Asymptotic properties of the minimum contrast estimators for projections of inhomogeneous space-time shot-noise Cox processes
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 387
EP - 411
AB - We consider a flexible class of space-time point process models—inhomogeneous shot-noise Cox point processes. They are suitable for modelling clustering phenomena, e.g. in epidemiology, seismology, etc. The particular structure of the model enables the use of projections to the spatial and temporal domain. They are used to formulate a step-wise estimation method to estimate different parts of the model separately. In the first step, the Poisson likelihood approach is used to estimate the inhomogeneity parameters. In the second and third steps, the minimum contrast estimation based on $K$-functions of the projected processes is used to estimate the interaction parameters. We study the asymptotic properties of the resulting estimators and formulate a set of conditions sufficient for establishing consistency and asymptotic normality of the estimators under the increasing domain asymptotics.
LA - eng
KW - space-time point process; shot-noise Cox process; minimum contrast estimation; projection process; increasing domain asymptotics; space-time point process; shot-noise Cox process; minimum contrast estimation; projection process; increasing domain asymptotics
UR - http://eudml.org/doc/283404
ER -

References

top
  1. Baddeley, A. J., Møller, J., Waagepetersen, R., 10.1111/1467-9574.00144, Stat. Neerl. 54 (2000), 329-350. (2000) Zbl1018.62027MR1804002DOI10.1111/1467-9574.00144
  2. Daley, D. J., Vere-Jones, D., An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure, Probability and Its Applications Springer, New York (2008). (2008) Zbl1159.60003MR2371524
  3. Diggle, P. J., Spatio-temporal point processes: methods and applications, B. Finkenstädt, et al. Statistical Methods for Spatio-temporal Systems Selected Invited Papers Based on the Presentations at the 6th Séminaire Européen de Statistique SemStat Held as a Summer School of the European Mathematical Society, Bernried, 2004, Chapman and Hall/CRC, Boca Raton, 2007 Monographs on Statistics and Applied Probability (2007), 1-45. Zbl1121.62080MR2307967
  4. Doukhan, P., 10.1007/978-1-4612-2642-0_3, Lecture Notes in Statistics 85 Springer, New York (1994). (1994) Zbl0801.60027MR1312160DOI10.1007/978-1-4612-2642-0_3
  5. Dvořák, J., Prokešová, M., Parameter estimation for inhomogeneous space-time shot-noise Cox point processes, (to appear) in Scand. J. Stat. MR3199056
  6. Gabriel, E., 10.1007/s11009-013-9358-3, Methodol. Comput. Appl. Probab. 16 (2014), 411-431. (2014) Zbl1308.60061MR3199055DOI10.1007/s11009-013-9358-3
  7. Gabriel, E., Diggle, P. J., 10.1111/j.1467-9574.2008.00407.x, Stat. Neerl. 63 (2009), 43-51. (2009) MR2656916DOI10.1111/j.1467-9574.2008.00407.x
  8. Guyon, X., Random Fields on a Network. Modeling, Statistics, and Applications, Probability and Its Applications Springer, New York (1995). (1995) Zbl0839.60003MR1344683
  9. Hager, W. W., 10.1137/S1052623499356071, SIAM J. Optim. 12 (2001), 188-208. (2001) Zbl1058.90045MR1870591DOI10.1137/S1052623499356071
  10. Hellmund, G., Prokešová, M., Jensen, E. B. V., 10.1017/S0001867800002718, Adv. Appl. Probab. 40 (2008), 603-629. (2008) Zbl1149.60031MR2454025DOI10.1017/S0001867800002718
  11. Kar{á}csony, Z., 10.18514/MMN.2006.151, Miskolc Math. Notes 7 (2006), 147-160. (2006) Zbl1120.41301MR2310274DOI10.18514/MMN.2006.151
  12. Motzkin, Th., 10.1090/S0002-9904-1947-08772-3, Bull. Am. Math. Soc. 53 (1947), 156-162. (1947) Zbl0032.24702MR0019653DOI10.1090/S0002-9904-1947-08772-3
  13. Møller, J., 10.1017/S0001867800012465, Adv. Appl. Probab. 35 (2003), 614-640. (2003) Zbl1045.60007MR1990607DOI10.1017/S0001867800012465
  14. Møller, J., Ghorbani, M., 10.1111/j.1467-9574.2012.00526.x, Stat. Neerl. 66 (2012), 472-491. (2012) MR2983306DOI10.1111/j.1467-9574.2012.00526.x
  15. Møller, J., Waagepetersen, R. P., Statistical Inference and Simulation for Spatial Point Processes, Monographs on Statistics and Applied Probability 100 Chapman & Hall/CRC, Boca Raton (2004). (2004) Zbl1044.62101MR2004226
  16. Prokešová, M., Dvořák, J., 10.1007/s11009-013-9324-0, Methodol. Comput. Appl. Probab. 16 (2014), 433-449. (2014) Zbl1305.62338MR3199056DOI10.1007/s11009-013-9324-0
  17. Prokešová, M., Dvořák, J., Jensen, E. B. V., Two-step estimation procedures for inhomogeneous shot-noise Cox processes, (to appear) in Ann. Inst. Stat. Math. 
  18. Ripley, B. D., Statistical Inference for Spatial Processes, Cambridge University Press, Cambridge (1988). (1988) Zbl0705.62090MR0971986
  19. Stoyan, D., Kendall, W. S., Mecke, J., Stochastic Geometry and Its Applications, Wiley Series in Probability and Mathematical Statistics John Wiley & Sons, Chichester (1995). (1995) Zbl0838.60002MR0895588
  20. Vaart, A. W. van der, Asymptotic Statistics, Cambridge Series in Statistical and Probabilistic Mathematics 3 Cambridge University Press, Cambridge (1998). (1998) MR1652247
  21. Waagepetersen, R., Guan, Y., 10.1111/j.1467-9868.2008.00702.x, J. R. Stat. Soc., Ser. B, Stat. Methodol. 71 (2009), 685-702. (2009) Zbl1250.62047MR2749914DOI10.1111/j.1467-9868.2008.00702.x

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.