Zonoids with an equatorial characterization
Applications of Mathematics (2016)
- Volume: 61, Issue: 4, page 413-422
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topAramyan, Rafik. "Zonoids with an equatorial characterization." Applications of Mathematics 61.4 (2016): 413-422. <http://eudml.org/doc/283406>.
@article{Aramyan2016,
abstract = {It is known that a local equatorial characterization of zonoids does not exist. The question arises: Is there a subclass of zonoids admitting a local equatorial characterization. In this article a sufficient condition is found for a centrally symmetric convex body to be a zonoid. The condition has a local equatorial description. Using the condition one can define a subclass of zonoids admitting a local equatorial characterization. It is also proved that a convex body whose boundary is an ellipsoid belongs to the class.},
author = {Aramyan, Rafik},
journal = {Applications of Mathematics},
keywords = {integral geometry; convex body; zonoid; support function; integral geometry; convex body; zonoid; support function},
language = {eng},
number = {4},
pages = {413-422},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Zonoids with an equatorial characterization},
url = {http://eudml.org/doc/283406},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Aramyan, Rafik
TI - Zonoids with an equatorial characterization
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 413
EP - 422
AB - It is known that a local equatorial characterization of zonoids does not exist. The question arises: Is there a subclass of zonoids admitting a local equatorial characterization. In this article a sufficient condition is found for a centrally symmetric convex body to be a zonoid. The condition has a local equatorial description. Using the condition one can define a subclass of zonoids admitting a local equatorial characterization. It is also proved that a convex body whose boundary is an ellipsoid belongs to the class.
LA - eng
KW - integral geometry; convex body; zonoid; support function; integral geometry; convex body; zonoid; support function
UR - http://eudml.org/doc/283406
ER -
References
top- Aramyan, R. H., Reconstruction of centrally symmetric convex bodies in , Bul. Acad. Ştiinţe Repub. Mold., Mat. 65 (2011), 28-32. (2011) MR2849225
- Aramyan, R. H., Measures in the space of planes and convex bodies, J. Contemp. Math. Anal., Armen. Acad. Sci. 47 78-85 (2012), translation from Izv. Nats. Akad. Nauk Armen., Mat. 47 19-30 Russian (2012). (2012) Zbl1302.53082MR3287915
- Goodey, P., Weil, W., 10.1016/B978-0-444-89597-4.50020-2, Handbook of Convex Geometry, Vol. A, B North-Holland, Amsterdam 1297-1326 (1993), P. M. Gruber et al. 1297-1326. (1993) Zbl0791.52006MR1243010DOI10.1016/B978-0-444-89597-4.50020-2
- Leichtweiss, K., Konvexe Mengen, Hochschulbücher für Mathematik 81 VEB Deutscher Verlag der Wissenschaften, Berlin (1980), German. (1980) Zbl0442.52001MR0586235
- Nazarov, F., Ryabogin, D., Zvavitch, A., 10.1016/j.aim.2007.08.013, Adv. Math. 217 (2008), 1368-1380. (2008) Zbl1151.52002MR2383902DOI10.1016/j.aim.2007.08.013
- Panina, G. Yu., Representation of an -dimensional body in the form of a sum of -dimensional bodies, Izv. Akad. Nauk Arm. SSR, Mat. 23 (1988), 385-395 Russian translation in Sov. J. Contemp. Math. Anal. 23 (1988), 91-103. (1988) Zbl0679.52006MR0997401
- Schneider, R., 10.1002/mana.19700440105, Math. Nachr. 44 (1970), 55-75 German. (1970) Zbl0162.54302MR0275286DOI10.1002/mana.19700440105
- Schneider, R., Convex Bodies: the Brunn-Minkowski Theory, Encyclopedia of Mathematics and Its Applications 44 Cambridge University Press, Cambridge (1993). (1993) Zbl0798.52001MR1216521
- Schneider, R., Weil, W., Zonoids and Related Topics, Convexity and Its Applications Birkhäuser, Basel (1983), 296-317. (1983) Zbl0524.52002MR0731116
- Weil, W., 10.1007/BF01220469, Arch. Math. 29 (1977), 655-659 German. (1977) Zbl0382.52006MR0513967DOI10.1007/BF01220469
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.