A counterexample to the rigidity conjecture for polyhedra
Page 1 Next
Robert Connelly (1977)
Publications Mathématiques de l'IHÉS
Panina, Gaiane (2008)
Beiträge zur Algebra und Geometrie
Kaising Tso (1992)
Mathematische Zeitschrift
P.M. Gruber (1995)
Discrete & computational geometry
Thomas Hasanis (1980)
Annales Polonici Mathematici
Let M be a closed connected surface in with positive Gaussian curvature K and let be the curvature of its second fundamental form. It is shown that M is a sphere if , for some constants c and r, where H is the mean curvature of M.
Manfredo do Carmo, Joao Lucas Barbosa (1978)
Mathematische Zeitschrift
Peter M. Gruber (1991)
Journal für die reine und angewandte Mathematik
Vladimir Oliker (2005)
Banach Center Publications
In his book on convex polytopes [2] A. D. Aleksandrov raised a general question of finding variational formulations and solutions to geometric problems of existence of convex polytopes in , n ≥ 2, with prescribed geometric data. Examples of such problems for closed convex polytopes for which variational solutions are known are the celebrated Minkowski problem [2] and the Gauss curvature problem [20]. In this paper we give a simple variational proof of existence for the A. D. Aleksandrov problem...
Philippe Delanoë (1987/1988)
Séminaire de théorie spectrale et géométrie
Kutateladze, S.S. (2007)
Sibirskij Matematicheskij Zhurnal
Liang-Khoon Koh (1997)
Manuscripta mathematica
Alexander I. Bobenko, Ivan Izmestiev (2008)
Annales de l’institut Fourier
We present a constructive proof of Alexandrov’s theorem on the existence of a convex polytope with a given metric on the boundary. The polytope is obtained by deforming certain generalized convex polytopes with the given boundary. We study the space of generalized convex polytopes and discover a connection with weighted Delaunay triangulations of polyhedral surfaces. The existence of the deformation follows from the non-degeneracy of the Hessian of the total scalar curvature of generalized convex...
Giovanni Rotondaro (1988)
Commentationes Mathematicae Universitatis Carolinae
С.З. Шефель (1974)
Sibirskij matematiceskij zurnal
С.З. Шефель (1975)
Sibirskij matematiceskij zurnal
Thomas Hasanis (1982)
Colloquium Mathematicae
Tatao Yamaguchi (1996/1997)
Séminaire de théorie spectrale et géométrie
Jürgen Jost (1995)
Commentarii mathematici Helvetici
G.R. Burton (1977)
Monatshefte für Mathematik
Vladimir I. Oliker (2005)
Banach Center Publications
Page 1 Next