Coarse structures and group actions

N. Brodskiy; J. Dydak; A. Mitra

Colloquium Mathematicae (2008)

  • Volume: 111, Issue: 1, page 149-158
  • ISSN: 0010-1354

Abstract

top
The main results of the paper are: Proposition 0.1. A group G acting coarsely on a coarse space (X,𝓒) induces a coarse equivalence g ↦ g·x₀ from G to X for any x₀ ∈ X. Theorem 0.2. Two coarse structures 𝓒₁ and 𝓒₂ on the same set X are equivalent if the following conditions are satisfied: (1) Bounded sets in 𝓒₁ are identical with bounded sets in 𝓒₂. (2) There is a coarse action ϕ₁ of a group G₁ on (X,𝓒₁) and a coarse action ϕ₂ of a group G₂ on (X,𝓒₂) such that ϕ₁ commutes with ϕ₂. They generalize the following two basic results of coarse geometry: Proposition 0.3 (Shvarts-Milnor lemma [5, Theorem 1.18]). A group G acting properly and cocompactly via isometries on a length space X is finitely generated and induces a quasi-isometry equivalence g ↦ g·x₀ from G to X for any x₀ ∈ X. Theorem 0.4 (Gromov [4, p. 6]). Two finitely generated groups G and H are quasi-isometric if and only if there is a locally compact space X admitting proper and cocompact actions of both G and H that commute.

How to cite

top

N. Brodskiy, J. Dydak, and A. Mitra. "Coarse structures and group actions." Colloquium Mathematicae 111.1 (2008): 149-158. <http://eudml.org/doc/283544>.

@article{N2008,
abstract = { The main results of the paper are: Proposition 0.1. A group G acting coarsely on a coarse space (X,𝓒) induces a coarse equivalence g ↦ g·x₀ from G to X for any x₀ ∈ X. Theorem 0.2. Two coarse structures 𝓒₁ and 𝓒₂ on the same set X are equivalent if the following conditions are satisfied: (1) Bounded sets in 𝓒₁ are identical with bounded sets in 𝓒₂. (2) There is a coarse action ϕ₁ of a group G₁ on (X,𝓒₁) and a coarse action ϕ₂ of a group G₂ on (X,𝓒₂) such that ϕ₁ commutes with ϕ₂. They generalize the following two basic results of coarse geometry: Proposition 0.3 (Shvarts-Milnor lemma [5, Theorem 1.18]). A group G acting properly and cocompactly via isometries on a length space X is finitely generated and induces a quasi-isometry equivalence g ↦ g·x₀ from G to X for any x₀ ∈ X. Theorem 0.4 (Gromov [4, p. 6]). Two finitely generated groups G and H are quasi-isometric if and only if there is a locally compact space X admitting proper and cocompact actions of both G and H that commute. },
author = {N. Brodskiy, J. Dydak, A. Mitra},
journal = {Colloquium Mathematicae},
keywords = {coarse structure; co-compact group action},
language = {eng},
number = {1},
pages = {149-158},
title = {Coarse structures and group actions},
url = {http://eudml.org/doc/283544},
volume = {111},
year = {2008},
}

TY - JOUR
AU - N. Brodskiy
AU - J. Dydak
AU - A. Mitra
TI - Coarse structures and group actions
JO - Colloquium Mathematicae
PY - 2008
VL - 111
IS - 1
SP - 149
EP - 158
AB - The main results of the paper are: Proposition 0.1. A group G acting coarsely on a coarse space (X,𝓒) induces a coarse equivalence g ↦ g·x₀ from G to X for any x₀ ∈ X. Theorem 0.2. Two coarse structures 𝓒₁ and 𝓒₂ on the same set X are equivalent if the following conditions are satisfied: (1) Bounded sets in 𝓒₁ are identical with bounded sets in 𝓒₂. (2) There is a coarse action ϕ₁ of a group G₁ on (X,𝓒₁) and a coarse action ϕ₂ of a group G₂ on (X,𝓒₂) such that ϕ₁ commutes with ϕ₂. They generalize the following two basic results of coarse geometry: Proposition 0.3 (Shvarts-Milnor lemma [5, Theorem 1.18]). A group G acting properly and cocompactly via isometries on a length space X is finitely generated and induces a quasi-isometry equivalence g ↦ g·x₀ from G to X for any x₀ ∈ X. Theorem 0.4 (Gromov [4, p. 6]). Two finitely generated groups G and H are quasi-isometric if and only if there is a locally compact space X admitting proper and cocompact actions of both G and H that commute.
LA - eng
KW - coarse structure; co-compact group action
UR - http://eudml.org/doc/283544
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.