Estimates for the Hardy-Littlewood maximal function on the Heisenberg group

Jacek Zienkiewicz

Colloquium Mathematicae (2005)

  • Volume: 103, Issue: 2, page 199-205
  • ISSN: 0010-1354

Abstract

top
We prove the dimension free estimates of the L p L p , 1< p ≤ ∞, norms of the Hardy-Littlewood maximal operator related to the optimal control balls on the Heisenberg group ℍⁿ.

How to cite

top

Jacek Zienkiewicz. "Estimates for the Hardy-Littlewood maximal function on the Heisenberg group." Colloquium Mathematicae 103.2 (2005): 199-205. <http://eudml.org/doc/283693>.

@article{JacekZienkiewicz2005,
abstract = {We prove the dimension free estimates of the $L^\{p\} → L^\{p\}$, 1< p ≤ ∞, norms of the Hardy-Littlewood maximal operator related to the optimal control balls on the Heisenberg group ℍⁿ.},
author = {Jacek Zienkiewicz},
journal = {Colloquium Mathematicae},
keywords = {Hardy-Littlewood maximal function; Heisenberg group},
language = {eng},
number = {2},
pages = {199-205},
title = {Estimates for the Hardy-Littlewood maximal function on the Heisenberg group},
url = {http://eudml.org/doc/283693},
volume = {103},
year = {2005},
}

TY - JOUR
AU - Jacek Zienkiewicz
TI - Estimates for the Hardy-Littlewood maximal function on the Heisenberg group
JO - Colloquium Mathematicae
PY - 2005
VL - 103
IS - 2
SP - 199
EP - 205
AB - We prove the dimension free estimates of the $L^{p} → L^{p}$, 1< p ≤ ∞, norms of the Hardy-Littlewood maximal operator related to the optimal control balls on the Heisenberg group ℍⁿ.
LA - eng
KW - Hardy-Littlewood maximal function; Heisenberg group
UR - http://eudml.org/doc/283693
ER -

NotesEmbed ?

top

You must be logged in to post comments.