Normal numbers and the middle prime factor of an integer

Jean-Marie De Koninck; Imre Kátai

Colloquium Mathematicae (2014)

  • Volume: 135, Issue: 1, page 69-77
  • ISSN: 0010-1354

Abstract

top
Let pₘ(n) stand for the middle prime factor of the integer n ≥ 2. We first establish that the size of log pₘ(n) is close to √(log n) for almost all n. We then show how one can use the successive values of pₘ(n) to generate a normal number in any given base D ≥ 2. Finally, we study the behavior of exponential sums involving the middle prime factor function.

How to cite

top

Jean-Marie De Koninck, and Imre Kátai. "Normal numbers and the middle prime factor of an integer." Colloquium Mathematicae 135.1 (2014): 69-77. <http://eudml.org/doc/283896>.

@article{Jean2014,
abstract = {Let pₘ(n) stand for the middle prime factor of the integer n ≥ 2. We first establish that the size of log pₘ(n) is close to √(log n) for almost all n. We then show how one can use the successive values of pₘ(n) to generate a normal number in any given base D ≥ 2. Finally, we study the behavior of exponential sums involving the middle prime factor function.},
author = {Jean-Marie De Koninck, Imre Kátai},
journal = {Colloquium Mathematicae},
keywords = {normal numbers; middle prime factor; exponential sums},
language = {eng},
number = {1},
pages = {69-77},
title = {Normal numbers and the middle prime factor of an integer},
url = {http://eudml.org/doc/283896},
volume = {135},
year = {2014},
}

TY - JOUR
AU - Jean-Marie De Koninck
AU - Imre Kátai
TI - Normal numbers and the middle prime factor of an integer
JO - Colloquium Mathematicae
PY - 2014
VL - 135
IS - 1
SP - 69
EP - 77
AB - Let pₘ(n) stand for the middle prime factor of the integer n ≥ 2. We first establish that the size of log pₘ(n) is close to √(log n) for almost all n. We then show how one can use the successive values of pₘ(n) to generate a normal number in any given base D ≥ 2. Finally, we study the behavior of exponential sums involving the middle prime factor function.
LA - eng
KW - normal numbers; middle prime factor; exponential sums
UR - http://eudml.org/doc/283896
ER -

NotesEmbed ?

top

You must be logged in to post comments.