top
Let pₘ(n) stand for the middle prime factor of the integer n ≥ 2. We first establish that the size of log pₘ(n) is close to √(log n) for almost all n. We then show how one can use the successive values of pₘ(n) to generate a normal number in any given base D ≥ 2. Finally, we study the behavior of exponential sums involving the middle prime factor function.
Jean-Marie De Koninck, and Imre Kátai. "Normal numbers and the middle prime factor of an integer." Colloquium Mathematicae 135.1 (2014): 69-77. <http://eudml.org/doc/283896>.
@article{Jean2014, abstract = {Let pₘ(n) stand for the middle prime factor of the integer n ≥ 2. We first establish that the size of log pₘ(n) is close to √(log n) for almost all n. We then show how one can use the successive values of pₘ(n) to generate a normal number in any given base D ≥ 2. Finally, we study the behavior of exponential sums involving the middle prime factor function.}, author = {Jean-Marie De Koninck, Imre Kátai}, journal = {Colloquium Mathematicae}, keywords = {normal numbers; middle prime factor; exponential sums}, language = {eng}, number = {1}, pages = {69-77}, title = {Normal numbers and the middle prime factor of an integer}, url = {http://eudml.org/doc/283896}, volume = {135}, year = {2014}, }
TY - JOUR AU - Jean-Marie De Koninck AU - Imre Kátai TI - Normal numbers and the middle prime factor of an integer JO - Colloquium Mathematicae PY - 2014 VL - 135 IS - 1 SP - 69 EP - 77 AB - Let pₘ(n) stand for the middle prime factor of the integer n ≥ 2. We first establish that the size of log pₘ(n) is close to √(log n) for almost all n. We then show how one can use the successive values of pₘ(n) to generate a normal number in any given base D ≥ 2. Finally, we study the behavior of exponential sums involving the middle prime factor function. LA - eng KW - normal numbers; middle prime factor; exponential sums UR - http://eudml.org/doc/283896 ER -