On sums of binomial coefficients modulo p²

Zhi-Wei Sun

Colloquium Mathematicae (2012)

  • Volume: 127, Issue: 1, page 39-54
  • ISSN: 0010-1354

Abstract

top
Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum k = 0 p a - 1 ( h p a - 1 k ) ( 2 k k ) / m k ( m o d p ² ) , where h and m are p-adic integers with m ≢ 0 (mod p). For example, we show that if h ≢ 0 (mod p) and p a > 3 , then k = 0 p a - 1 ( h p a - 1 k ) ( 2 k k ) ( - h / 2 ) k ( ( 1 - 2 h ) / ( p a ) ) ( 1 + h ( ( 4 - 2 / h ) p - 1 - 1 ) ) ( m o d p ² ) , where (·/·) denotes the Jacobi symbol. Here is another remarkable congruence: If p a > 3 then k = 0 p a - 1 ( p a - 1 k ) ( 2 k k ) ( - 1 ) k 3 p - 1 ( p a / 3 ) ( m o d p ² ) .

How to cite

top

Zhi-Wei Sun. "On sums of binomial coefficients modulo p²." Colloquium Mathematicae 127.1 (2012): 39-54. <http://eudml.org/doc/284015>.

@article{Zhi2012,
abstract = {Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum $∑_\{k=0\}^\{p^\{a\}-1\} (hp^\{a\}-1 \atop k) (2k \atop k)/m^\{k\} (mod p²)$, where h and m are p-adic integers with m ≢ 0 (mod p). For example, we show that if h ≢ 0 (mod p) and $p^\{a\} > 3$, then $∑_\{k=0\}^\{p^\{a\}-1\} (hp^\{a\}-1 \atop k)(2k \atop k)(-h/2)^\{k\} ≡ ((1-2h)/(p^\{a\}))(1 + h((4-2/h)^\{p-1\} - 1)) (mod p²)$, where (·/·) denotes the Jacobi symbol. Here is another remarkable congruence: If $p^\{a\} > 3$ then $∑_\{k=0\}^\{p^\{a\}-1\} (p^\{a\}-1 \atop k)(2k \atop k)(-1)^\{k\} ≡ 3^\{p-1\} (p^\{a\}/3) (mod p²)$.},
author = {Zhi-Wei Sun},
journal = {Colloquium Mathematicae},
keywords = {central binomial coefficients; congruences modulo prime powers},
language = {eng},
number = {1},
pages = {39-54},
title = {On sums of binomial coefficients modulo p²},
url = {http://eudml.org/doc/284015},
volume = {127},
year = {2012},
}

TY - JOUR
AU - Zhi-Wei Sun
TI - On sums of binomial coefficients modulo p²
JO - Colloquium Mathematicae
PY - 2012
VL - 127
IS - 1
SP - 39
EP - 54
AB - Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum $∑_{k=0}^{p^{a}-1} (hp^{a}-1 \atop k) (2k \atop k)/m^{k} (mod p²)$, where h and m are p-adic integers with m ≢ 0 (mod p). For example, we show that if h ≢ 0 (mod p) and $p^{a} > 3$, then $∑_{k=0}^{p^{a}-1} (hp^{a}-1 \atop k)(2k \atop k)(-h/2)^{k} ≡ ((1-2h)/(p^{a}))(1 + h((4-2/h)^{p-1} - 1)) (mod p²)$, where (·/·) denotes the Jacobi symbol. Here is another remarkable congruence: If $p^{a} > 3$ then $∑_{k=0}^{p^{a}-1} (p^{a}-1 \atop k)(2k \atop k)(-1)^{k} ≡ 3^{p-1} (p^{a}/3) (mod p²)$.
LA - eng
KW - central binomial coefficients; congruences modulo prime powers
UR - http://eudml.org/doc/284015
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.