A free group of piecewise linear transformations

Grzegorz Tomkowicz

Colloquium Mathematicae (2011)

  • Volume: 125, Issue: 2, page 141-146
  • ISSN: 0010-1354

Abstract

top
We prove the following conjecture of J. Mycielski: There exists a free nonabelian group of piecewise linear, orientation and area preserving transformations which acts on the punctured disk {(x,y) ∈ ℝ²: 0 < x² + y² < 1} without fixed points.

How to cite

top

Grzegorz Tomkowicz. "A free group of piecewise linear transformations." Colloquium Mathematicae 125.2 (2011): 141-146. <http://eudml.org/doc/284077>.

@article{GrzegorzTomkowicz2011,
abstract = {We prove the following conjecture of J. Mycielski: There exists a free nonabelian group of piecewise linear, orientation and area preserving transformations which acts on the punctured disk \{(x,y) ∈ ℝ²: 0 < x² + y² < 1\} without fixed points.},
author = {Grzegorz Tomkowicz},
journal = {Colloquium Mathematicae},
keywords = {free group; Hausdorff-Banach-Tarski paradox; paradoxical set},
language = {eng},
number = {2},
pages = {141-146},
title = {A free group of piecewise linear transformations},
url = {http://eudml.org/doc/284077},
volume = {125},
year = {2011},
}

TY - JOUR
AU - Grzegorz Tomkowicz
TI - A free group of piecewise linear transformations
JO - Colloquium Mathematicae
PY - 2011
VL - 125
IS - 2
SP - 141
EP - 146
AB - We prove the following conjecture of J. Mycielski: There exists a free nonabelian group of piecewise linear, orientation and area preserving transformations which acts on the punctured disk {(x,y) ∈ ℝ²: 0 < x² + y² < 1} without fixed points.
LA - eng
KW - free group; Hausdorff-Banach-Tarski paradox; paradoxical set
UR - http://eudml.org/doc/284077
ER -

NotesEmbed ?

top

You must be logged in to post comments.