top
We prove the following conjecture of J. Mycielski: There exists a free nonabelian group of piecewise linear, orientation and area preserving transformations which acts on the punctured disk {(x,y) ∈ ℝ²: 0 < x² + y² < 1} without fixed points.
Grzegorz Tomkowicz. "A free group of piecewise linear transformations." Colloquium Mathematicae 125.2 (2011): 141-146. <http://eudml.org/doc/284077>.
@article{GrzegorzTomkowicz2011, abstract = {We prove the following conjecture of J. Mycielski: There exists a free nonabelian group of piecewise linear, orientation and area preserving transformations which acts on the punctured disk \{(x,y) ∈ ℝ²: 0 < x² + y² < 1\} without fixed points.}, author = {Grzegorz Tomkowicz}, journal = {Colloquium Mathematicae}, keywords = {free group; Hausdorff-Banach-Tarski paradox; paradoxical set}, language = {eng}, number = {2}, pages = {141-146}, title = {A free group of piecewise linear transformations}, url = {http://eudml.org/doc/284077}, volume = {125}, year = {2011}, }
TY - JOUR AU - Grzegorz Tomkowicz TI - A free group of piecewise linear transformations JO - Colloquium Mathematicae PY - 2011 VL - 125 IS - 2 SP - 141 EP - 146 AB - We prove the following conjecture of J. Mycielski: There exists a free nonabelian group of piecewise linear, orientation and area preserving transformations which acts on the punctured disk {(x,y) ∈ ℝ²: 0 < x² + y² < 1} without fixed points. LA - eng KW - free group; Hausdorff-Banach-Tarski paradox; paradoxical set UR - http://eudml.org/doc/284077 ER -