Subsequence sums of zero-sum free sequences over finite abelian groups
Yongke Qu; Xingwu Xia; Lin Xue; Qinghai Zhong
Colloquium Mathematicae (2015)
- Volume: 140, Issue: 1, page 119-127
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topYongke Qu, et al. "Subsequence sums of zero-sum free sequences over finite abelian groups." Colloquium Mathematicae 140.1 (2015): 119-127. <http://eudml.org/doc/284207>.
@article{YongkeQu2015,
abstract = {Let G be a finite abelian group of rank r and let X be a zero-sum free sequence over G whose support supp(X) generates G. In 2009, Pixton proved that $|Σ(X)| ≥ 2^\{r-1\}(|X|-r+2) - 1$ for r ≤ 3. We show that this result also holds for abelian groups G of rank 4 if the smallest prime p dividing |G| satisfies p ≥ 13.},
author = {Yongke Qu, Xingwu Xia, Lin Xue, Qinghai Zhong},
journal = {Colloquium Mathematicae},
keywords = {zero-sum free sequence; finite abelian group; davenport's constant},
language = {eng},
number = {1},
pages = {119-127},
title = {Subsequence sums of zero-sum free sequences over finite abelian groups},
url = {http://eudml.org/doc/284207},
volume = {140},
year = {2015},
}
TY - JOUR
AU - Yongke Qu
AU - Xingwu Xia
AU - Lin Xue
AU - Qinghai Zhong
TI - Subsequence sums of zero-sum free sequences over finite abelian groups
JO - Colloquium Mathematicae
PY - 2015
VL - 140
IS - 1
SP - 119
EP - 127
AB - Let G be a finite abelian group of rank r and let X be a zero-sum free sequence over G whose support supp(X) generates G. In 2009, Pixton proved that $|Σ(X)| ≥ 2^{r-1}(|X|-r+2) - 1$ for r ≤ 3. We show that this result also holds for abelian groups G of rank 4 if the smallest prime p dividing |G| satisfies p ≥ 13.
LA - eng
KW - zero-sum free sequence; finite abelian group; davenport's constant
UR - http://eudml.org/doc/284207
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.