Observability of saturated systems with an offset

M. L. J. Hautus

Kybernetika (1995)

  • Volume: 31, Issue: 6, page 581-590
  • ISSN: 0023-5954

How to cite

top

Hautus, M. L. J.. "Observability of saturated systems with an offset." Kybernetika 31.6 (1995): 581-590. <http://eudml.org/doc/28423>.

@article{Hautus1995,
author = {Hautus, M. L. J.},
journal = {Kybernetika},
keywords = {observability; saturation; almost periodic functions; Bohl functions},
language = {eng},
number = {6},
pages = {581-590},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Observability of saturated systems with an offset},
url = {http://eudml.org/doc/28423},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Hautus, M. L. J.
TI - Observability of saturated systems with an offset
JO - Kybernetika
PY - 1995
PB - Institute of Information Theory and Automation AS CR
VL - 31
IS - 6
SP - 581
EP - 590
LA - eng
KW - observability; saturation; almost periodic functions; Bohl functions
UR - http://eudml.org/doc/28423
ER -

References

top
  1. H. Bohr, Almost Periodic Functions, Chelsca, New York 1947. (1947) MR0020163
  2. R. Koplon, Linear Systems with Constгained Outputs and Transitions, Thesis, Dept. of Math. New Brunswick, New Jersey, October 1994. (1994) 
  3. R. Koplon E. D. Sontag, M. L. J. Hautus, Observability of linear systems with saturated outputs, Linear Algebra Appl. 205/206 (1994), 909-936. (1994) MR1276846
  4. R. Schwarzschild E. D. Sontag, M. L. J. Hautus, Output-saturated systems, In: Proc. Amer. Control Conf., Chicago 1992, pp. 2504-2509. (1992) 
  5. E. D. Sontag, An algebraic approach to bounded controllability of linear systems, Internat. J. Control 39 (1984), 181-188. (1984) Zbl0531.93013MR0730505

NotesEmbed ?

top

You must be logged in to post comments.