Observability of saturated systems with an offset
Kybernetika (1995)
- Volume: 31, Issue: 6, page 581-590
- ISSN: 0023-5954
Access Full Article
topHow to cite
topHautus, M. L. J.. "Observability of saturated systems with an offset." Kybernetika 31.6 (1995): 581-590. <http://eudml.org/doc/28423>.
@article{Hautus1995,
	author = {Hautus, M. L. J.},
	journal = {Kybernetika},
	keywords = {observability; saturation; almost periodic functions; Bohl functions},
	language = {eng},
	number = {6},
	pages = {581-590},
	publisher = {Institute of Information Theory and Automation AS CR},
	title = {Observability of saturated systems with an offset},
	url = {http://eudml.org/doc/28423},
	volume = {31},
	year = {1995},
}
TY  - JOUR
AU  - Hautus, M. L. J.
TI  - Observability of saturated systems with an offset
JO  - Kybernetika
PY  - 1995
PB  - Institute of Information Theory and Automation AS CR
VL  - 31
IS  - 6
SP  - 581
EP  - 590
LA  - eng
KW  - observability; saturation; almost periodic functions; Bohl functions
UR  - http://eudml.org/doc/28423
ER  - 
References
top- H. Bohr, Almost Periodic Functions, Chelsca, New York 1947. (1947) MR0020163
- R. Koplon, Linear Systems with Constгained Outputs and Transitions, Thesis, Dept. of Math. New Brunswick, New Jersey, October 1994. (1994)
- R. Koplon E. D. Sontag, M. L. J. Hautus, Observability of linear systems with saturated outputs, Linear Algebra Appl. 205/206 (1994), 909-936. (1994) MR1276846
- R. Schwarzschild E. D. Sontag, M. L. J. Hautus, Output-saturated systems, In: Proc. Amer. Control Conf., Chicago 1992, pp. 2504-2509. (1992)
- E. D. Sontag, An algebraic approach to bounded controllability of linear systems, Internat. J. Control 39 (1984), 181-188. (1984) Zbl0531.93013MR0730505
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 