A direct approach to the Weiss conjecture for bounded analytic semigroups
We give a new proof of the Weiss conjecture for analytic semigroups. Our approach does not make any recourse to the bounded -calculus and is based on elementary analysis.
We give a new proof of the Weiss conjecture for analytic semigroups. Our approach does not make any recourse to the bounded -calculus and is based on elementary analysis.
Maps defined on the interior of the standard non-negative cone in which are both homogeneous of degree and order-preserving arise naturally in the study of certain classes of Discrete Event Systems. Such maps are non-expanding in Thompson’s part metric and continuous on the interior of the cone. It follows from more general results presented here that all such maps have a homogeneous order-preserving continuous extension to the whole cone. It follows that the extension must have at least...
Local constrained controllability problems for nonlinear finite-dimensional discrete 1-D and 2-D control systems with constant coefficients are formulated and discussed. Using some mapping theorems taken from nonlinear functional analysis and linear approximation methods, sufficient conditions for constrained controllability in bounded domains are derived and proved. The paper extends the controllability conditions with unconstrained controls given in the literature to cover both 1-D and 2-D nonlinear...
Sufficient conditions for controllability of semilinear functional integrodifferential systems in a Banach space are established. The results are obtained by using the Schaefer fixed-point theorem.
Considered is the control and stabilizability of a slowly rotating non-homogeneous Timoshenko beam with the aid of a torque. It turns out that the beam is (approximately) controllable with the aid of the torque if and only if it is (approximately) controllable. However, the controllability problem appears to be a side-effect while studying the stabilizability. To build a stabilizing control one needs to go through the methods of correcting the operators with functionals so that they have finally...
The Hamilton-Jacobi-Bellman equation corresponding to a large class of distributed control problems is reduced to a linear parabolic equation having a regular solution. A formula for the first derivative is obtained.
In this paper equivalent conditions for exact observability of diagonal systems with a one-dimensional output operator are given. One of these equivalent conditions is the conjecture of Russell and Weiss (1994). The other conditions are given in terms of the eigenvalues and the Fourier coefficients of the system data.
The following is a short survey of the notion of a well-posed linear system. We start by describing the most basic concepts, proceed to discuss dissipative and conservative systems, and finally introduce J-energy-preserving systems, i.e., systems that preserve energy with respect to some generalized inner products (possibly semi-definite or indefinite) in the input, state and output spaces. The class of well-posed linear systems contains most linear time-independent distributed parameter systems:...
2000 Mathematics Subject Classification: Primary 47A48, 93B28, 47A65; Secondary 34C94.New concepts of linear colligations and dynamic systems, corresponding to the linear operators, acting in the Banach spaces, are introduced. The main properties of the transfer function and its relation to the dual transfer function are established.
We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.
We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.
The purpose of this paper is to exhibit a connection between the Hermitian solutions of matrix Riccati equations and a class of finite dimensional reproducing kernel Krein spaces. This connection is then exploited to obtain minimal factorizations of rational matrix valued functions that are J-unitary on the imaginary axis in a natural way.
The class of Sturm-Liouville systems is defined. It appears to be a subclass of Riesz-spectral systems, since it is shown that the negative of a Sturm-Liouville operator is a Riesz-spectral operator on L^2(a,b) and the infinitesimal generator of a C_0-semigroup of bounded linear operators.
It is shown that the limit in an abstract version of Szegő's limit theorem can be expressed in terms of the antistable dynamics of the system. When the system dynamics are regular, it is shown that the limit equals the difference between the antistable Lyapunov exponents of the system and those of its inverse. In the general case, the elements of the dichotomy spectrum give lower and upper bounds.