The Diophantine equation
Colloquium Mathematicae (2013)
- Volume: 132, Issue: 1, page 95-100
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topMin Tang, and Quan-Hui Yang. "The Diophantine equation $(bn)^{x} + (2n)^{y} = ((b+2)n)^{z}$." Colloquium Mathematicae 132.1 (2013): 95-100. <http://eudml.org/doc/284277>.
@article{MinTang2013,
abstract = {Recently, Miyazaki and Togbé proved that for any fixed odd integer b ≥ 5 with b ≠ 89, the Diophantine equation $b^\{x\} + 2^\{y\} = (b+2)^\{z\}$ has only the solution (x,y,z) = (1,1,1). We give an extension of this result.},
author = {Min Tang, Quan-Hui Yang},
journal = {Colloquium Mathematicae},
keywords = {Diophantine equation},
language = {eng},
number = {1},
pages = {95-100},
title = {The Diophantine equation $(bn)^\{x\} + (2n)^\{y\} = ((b+2)n)^\{z\}$},
url = {http://eudml.org/doc/284277},
volume = {132},
year = {2013},
}
TY - JOUR
AU - Min Tang
AU - Quan-Hui Yang
TI - The Diophantine equation $(bn)^{x} + (2n)^{y} = ((b+2)n)^{z}$
JO - Colloquium Mathematicae
PY - 2013
VL - 132
IS - 1
SP - 95
EP - 100
AB - Recently, Miyazaki and Togbé proved that for any fixed odd integer b ≥ 5 with b ≠ 89, the Diophantine equation $b^{x} + 2^{y} = (b+2)^{z}$ has only the solution (x,y,z) = (1,1,1). We give an extension of this result.
LA - eng
KW - Diophantine equation
UR - http://eudml.org/doc/284277
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.