On the Diophantine equation
Florian Luca, Alain Togbé (2009)
Colloquium Mathematicae
Similarity:
We find all the solutions of the Diophantine equation in positive integers x,y,α,β,n ≥ 3 with x and y coprime.
Florian Luca, Alain Togbé (2009)
Colloquium Mathematicae
Similarity:
We find all the solutions of the Diophantine equation in positive integers x,y,α,β,n ≥ 3 with x and y coprime.
Susil Kumar Jena (2015)
Communications in Mathematics
Similarity:
The two related Diophantine equations: and , have infinitely many nontrivial, primitive integral solutions. We give two parametric solutions, one for each of these equations.
Mihai Cipu (2015)
Acta Arithmetica
Similarity:
A set of m positive integers with the property that the product of any two of them is the predecessor of a perfect square is called a Diophantine m-tuple. Much work has been done attempting to prove that there exist no Diophantine quintuples. In this paper we give stringent conditions that should be met by a putative Diophantine quintuple. Among others, we show that any Diophantine quintuple a,b,c,d,e with a < b < c < d < ed < 1.55·1072b < 6.21·1035c = a + b + 2√(ab+1)...
Florian Luca (2004)
Acta Arithmetica
Similarity:
A. Rotkiewicz, A. Schinzel (1987)
Colloquium Mathematicae
Similarity:
Carlo Viola (1973)
Acta Arithmetica
Similarity:
H. L. Zhu (2012)
Acta Arithmetica
Similarity:
Florian Luca (2012)
Acta Arithmetica
Similarity:
Jiagui Luo (2001)
Acta Arithmetica
Similarity:
Sz. Tengely (2007)
Acta Arithmetica
Similarity:
Hui Lin Zhu (2011)
Acta Arithmetica
Similarity:
J. H. E. Cohn (2003)
Acta Arithmetica
Similarity:
Csaba Rakaczki (2012)
Acta Arithmetica
Similarity:
Jianping Wang, Tingting Wang, Wenpeng Zhang (2015)
Colloquium Mathematicae
Similarity:
Let m be a positive integer. Using an upper bound for the solutions of generalized Ramanujan-Nagell equations given by Y. Bugeaud and T. N. Shorey, we prove that if 3 ∤ m, then the equation has only the positive integer solution (x,y,z) = (1,1,2).
Florian Luca, Volker Ziegler (2013)
Acta Arithmetica
Similarity:
Given a binary recurrence , we consider the Diophantine equation with nonnegative integer unknowns , where for 1 ≤ i < j ≤ L, , and K is a fixed parameter. We show that the above equation has only finitely many solutions and the largest one can be explicitly bounded. We demonstrate the strength of our method by completely solving a particular Diophantine equation of the above form.
Andrzej Dąbrowski (2011)
Colloquium Mathematicae
Similarity:
We completely solve the Diophantine equations (for q = 17, 29, 41). We also determine all and , where are fixed primes satisfying certain conditions. The corresponding Diophantine equations x² + C = yⁿ may be studied by the method used by Abu Muriefah et al. (2008) and Luca and Togbé (2009).
Paulo Ribenboim (2003)
Acta Arithmetica
Similarity: