Inequalities for two sine polynomials
Horst Alzer; Stamatis Koumandos
Colloquium Mathematicae (2006)
- Volume: 105, Issue: 1, page 127-134
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topHorst Alzer, and Stamatis Koumandos. "Inequalities for two sine polynomials." Colloquium Mathematicae 105.1 (2006): 127-134. <http://eudml.org/doc/284357>.
@article{HorstAlzer2006,
abstract = {We prove:
(I) For all integers n ≥ 2 and real numbers x ∈ (0,π) we have
$α ≤ ∑_\{j=1\}^\{n-1\} 1/(n²-j²) sin(jx) ≤ β$,
with the best possible constant bounds
α = (15-√2073)/10240 √(1998-10√2073) = -0.1171..., β = 1/3.
(II) The inequality
$0 < ∑_\{j=1\}^\{n-1\} (n²-j²)sin(jx)$
holds for all even integers n ≥ 2 and x ∈ (0,π), and also for all odd integers n ≥ 3 and x ∈ (0,π - π/n].},
author = {Horst Alzer, Stamatis Koumandos},
journal = {Colloquium Mathematicae},
keywords = {trigonometric polynomials; inequalities},
language = {eng},
number = {1},
pages = {127-134},
title = {Inequalities for two sine polynomials},
url = {http://eudml.org/doc/284357},
volume = {105},
year = {2006},
}
TY - JOUR
AU - Horst Alzer
AU - Stamatis Koumandos
TI - Inequalities for two sine polynomials
JO - Colloquium Mathematicae
PY - 2006
VL - 105
IS - 1
SP - 127
EP - 134
AB - We prove:
(I) For all integers n ≥ 2 and real numbers x ∈ (0,π) we have
$α ≤ ∑_{j=1}^{n-1} 1/(n²-j²) sin(jx) ≤ β$,
with the best possible constant bounds
α = (15-√2073)/10240 √(1998-10√2073) = -0.1171..., β = 1/3.
(II) The inequality
$0 < ∑_{j=1}^{n-1} (n²-j²)sin(jx)$
holds for all even integers n ≥ 2 and x ∈ (0,π), and also for all odd integers n ≥ 3 and x ∈ (0,π - π/n].
LA - eng
KW - trigonometric polynomials; inequalities
UR - http://eudml.org/doc/284357
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.