Hardy spaces H¹ for Schrödinger operators with certain potentials
Jacek Dziubański; Jacek Zienkiewicz
Studia Mathematica (2004)
- Volume: 164, Issue: 1, page 39-53
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topJacek Dziubański, and Jacek Zienkiewicz. "Hardy spaces H¹ for Schrödinger operators with certain potentials." Studia Mathematica 164.1 (2004): 39-53. <http://eudml.org/doc/284608>.
@article{JacekDziubański2004,
abstract = {Let $\{K_\{t\}\}_\{t>0\}$ be the semigroup of linear operators generated by a Schrödinger operator -L = Δ - V with V ≥ 0. We say that f belongs to $H¹_\{L\}$ if $||sup_\{t>0\} |K_\{t\}f(x)| ||_\{L¹(dx)\} < ∞$. We state conditions on V and $K_\{t\}$ which allow us to give an atomic characterization of the space $H¹_\{L\}$.},
author = {Jacek Dziubański, Jacek Zienkiewicz},
journal = {Studia Mathematica},
keywords = {Schrödinger operator; atomic decomposition; Hardy space},
language = {eng},
number = {1},
pages = {39-53},
title = {Hardy spaces H¹ for Schrödinger operators with certain potentials},
url = {http://eudml.org/doc/284608},
volume = {164},
year = {2004},
}
TY - JOUR
AU - Jacek Dziubański
AU - Jacek Zienkiewicz
TI - Hardy spaces H¹ for Schrödinger operators with certain potentials
JO - Studia Mathematica
PY - 2004
VL - 164
IS - 1
SP - 39
EP - 53
AB - Let ${K_{t}}_{t>0}$ be the semigroup of linear operators generated by a Schrödinger operator -L = Δ - V with V ≥ 0. We say that f belongs to $H¹_{L}$ if $||sup_{t>0} |K_{t}f(x)| ||_{L¹(dx)} < ∞$. We state conditions on V and $K_{t}$ which allow us to give an atomic characterization of the space $H¹_{L}$.
LA - eng
KW - Schrödinger operator; atomic decomposition; Hardy space
UR - http://eudml.org/doc/284608
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.