Proximal normal structure and relatively nonexpansive mappings

A. Anthony Eldred; W. A. Kirk; P. Veeramani

Studia Mathematica (2005)

  • Volume: 171, Issue: 3, page 283-293
  • ISSN: 0039-3223

Abstract

top
The notion of proximal normal structure is introduced and used to study mappings that are "relatively nonexpansive" in the sense that they are defined on the union of two subsets A and B of a Banach space X and satisfy ∥ Tx-Ty∥ ≤ ∥ x-y∥ for all x ∈ A, y ∈ B. It is shown that if A and B are weakly compact and convex, and if the pair (A,B) has proximal normal structure, then a relatively nonexpansive mapping T: A ∪ B → A ∪ B satisfying (i) T(A) ⊆ B and T(B) ⊆ A, has a proximal point in the sense that there exists x₀ ∈ A ∪ B such that ∥ x₀-Tx₀∥ = dist(A,B). If in addition the norm of X is strictly convex, and if (i) is replaced with (i)' T(A) ⊆ A and T(B) ⊆ B, then the conclusion is that there exist x₀ ∈ A and y₀ ∈ B such that x₀ and y₀ are fixed points of T and ∥ x₀ -y₀∥ = dist(A,B). Because every bounded closed convex pair in a uniformly convex Banach space has proximal normal structure, these results hold in all uniformly convex spaces. A Krasnosel'skiĭ type iteration method for approximating the fixed points of relatively nonexpansive mappings is also given, and some related Hilbert space results are discussed.

How to cite

top

A. Anthony Eldred, W. A. Kirk, and P. Veeramani. "Proximal normal structure and relatively nonexpansive mappings." Studia Mathematica 171.3 (2005): 283-293. <http://eudml.org/doc/284693>.

@article{A2005,
abstract = {The notion of proximal normal structure is introduced and used to study mappings that are "relatively nonexpansive" in the sense that they are defined on the union of two subsets A and B of a Banach space X and satisfy ∥ Tx-Ty∥ ≤ ∥ x-y∥ for all x ∈ A, y ∈ B. It is shown that if A and B are weakly compact and convex, and if the pair (A,B) has proximal normal structure, then a relatively nonexpansive mapping T: A ∪ B → A ∪ B satisfying (i) T(A) ⊆ B and T(B) ⊆ A, has a proximal point in the sense that there exists x₀ ∈ A ∪ B such that ∥ x₀-Tx₀∥ = dist(A,B). If in addition the norm of X is strictly convex, and if (i) is replaced with (i)' T(A) ⊆ A and T(B) ⊆ B, then the conclusion is that there exist x₀ ∈ A and y₀ ∈ B such that x₀ and y₀ are fixed points of T and ∥ x₀ -y₀∥ = dist(A,B). Because every bounded closed convex pair in a uniformly convex Banach space has proximal normal structure, these results hold in all uniformly convex spaces. A Krasnosel'skiĭ type iteration method for approximating the fixed points of relatively nonexpansive mappings is also given, and some related Hilbert space results are discussed.},
author = {A. Anthony Eldred, W. A. Kirk, P. Veeramani},
journal = {Studia Mathematica},
keywords = {proximal normal structure; relatively nonexpansive mappings; proximal points; fixed points},
language = {eng},
number = {3},
pages = {283-293},
title = {Proximal normal structure and relatively nonexpansive mappings},
url = {http://eudml.org/doc/284693},
volume = {171},
year = {2005},
}

TY - JOUR
AU - A. Anthony Eldred
AU - W. A. Kirk
AU - P. Veeramani
TI - Proximal normal structure and relatively nonexpansive mappings
JO - Studia Mathematica
PY - 2005
VL - 171
IS - 3
SP - 283
EP - 293
AB - The notion of proximal normal structure is introduced and used to study mappings that are "relatively nonexpansive" in the sense that they are defined on the union of two subsets A and B of a Banach space X and satisfy ∥ Tx-Ty∥ ≤ ∥ x-y∥ for all x ∈ A, y ∈ B. It is shown that if A and B are weakly compact and convex, and if the pair (A,B) has proximal normal structure, then a relatively nonexpansive mapping T: A ∪ B → A ∪ B satisfying (i) T(A) ⊆ B and T(B) ⊆ A, has a proximal point in the sense that there exists x₀ ∈ A ∪ B such that ∥ x₀-Tx₀∥ = dist(A,B). If in addition the norm of X is strictly convex, and if (i) is replaced with (i)' T(A) ⊆ A and T(B) ⊆ B, then the conclusion is that there exist x₀ ∈ A and y₀ ∈ B such that x₀ and y₀ are fixed points of T and ∥ x₀ -y₀∥ = dist(A,B). Because every bounded closed convex pair in a uniformly convex Banach space has proximal normal structure, these results hold in all uniformly convex spaces. A Krasnosel'skiĭ type iteration method for approximating the fixed points of relatively nonexpansive mappings is also given, and some related Hilbert space results are discussed.
LA - eng
KW - proximal normal structure; relatively nonexpansive mappings; proximal points; fixed points
UR - http://eudml.org/doc/284693
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.