Best proximity point for proximal Berinde nonexpansive mappings on starshaped sets

Nuttawut Bunlue; Suthep Suantai

Archivum Mathematicum (2018)

  • Volume: 054, Issue: 3, page 165-176
  • ISSN: 0044-8753

Abstract

top
In this paper, we introduce the new concept of proximal mapping, namely proximal weak contractions and proximal Berinde nonexpansive mappings. We prove the existence of best proximity points for proximal weak contractions in metric spaces, and for proximal Berinde nonexpansive mappings on starshape sets in Banach spaces. Examples supporting our main results are also given. Our main results extend and generalize some of well-known best proximity point theorems of proximal nonexpansive mappings in the literatures.

How to cite

top

Bunlue, Nuttawut, and Suantai, Suthep. "Best proximity point for proximal Berinde nonexpansive mappings on starshaped sets." Archivum Mathematicum 054.3 (2018): 165-176. <http://eudml.org/doc/294659>.

@article{Bunlue2018,
abstract = {In this paper, we introduce the new concept of proximal mapping, namely proximal weak contractions and proximal Berinde nonexpansive mappings. We prove the existence of best proximity points for proximal weak contractions in metric spaces, and for proximal Berinde nonexpansive mappings on starshape sets in Banach spaces. Examples supporting our main results are also given. Our main results extend and generalize some of well-known best proximity point theorems of proximal nonexpansive mappings in the literatures.},
author = {Bunlue, Nuttawut, Suantai, Suthep},
journal = {Archivum Mathematicum},
keywords = {best proximity point; proximal weak contraction mapping; proximal Berinde nonexpansive mapping; starshaped set},
language = {eng},
number = {3},
pages = {165-176},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Best proximity point for proximal Berinde nonexpansive mappings on starshaped sets},
url = {http://eudml.org/doc/294659},
volume = {054},
year = {2018},
}

TY - JOUR
AU - Bunlue, Nuttawut
AU - Suantai, Suthep
TI - Best proximity point for proximal Berinde nonexpansive mappings on starshaped sets
JO - Archivum Mathematicum
PY - 2018
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 054
IS - 3
SP - 165
EP - 176
AB - In this paper, we introduce the new concept of proximal mapping, namely proximal weak contractions and proximal Berinde nonexpansive mappings. We prove the existence of best proximity points for proximal weak contractions in metric spaces, and for proximal Berinde nonexpansive mappings on starshape sets in Banach spaces. Examples supporting our main results are also given. Our main results extend and generalize some of well-known best proximity point theorems of proximal nonexpansive mappings in the literatures.
LA - eng
KW - best proximity point; proximal weak contraction mapping; proximal Berinde nonexpansive mapping; starshaped set
UR - http://eudml.org/doc/294659
ER -

References

top
  1. Basha, S.S., 10.1007/s10957-011-9869-4, J. Optim. Theory Appl. 151 (1) (2011), 210–216. (2011) MR2836473DOI10.1007/s10957-011-9869-4
  2. Basha, S.S., Veeramani, P., 10.1006/jath.1999.3415, J. Approx. Theory 103 (1) (2000), 119–129. (2000) MR1744381DOI10.1006/jath.1999.3415
  3. Berinde, V., Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum 9 (2004), 43–53. (2004) MR2111366
  4. Chen, J., Xiao, S., Wang, H., Deng, S., Best proximity point for the proximal nonexpansive mapping on the starshaped sets, Fixed Point Theory and Applications 19 (2015). (2015) MR3306103
  5. Eldred, A.A., Veeramani, P., 10.1016/j.jmaa.2005.10.081, J. Math. Anal. Appl. 323 (2) (2006), 1001–1006. (2006) MR2260159DOI10.1016/j.jmaa.2005.10.081
  6. Fan, K., 10.1007/BF01353421, Math. Ann. 142 (1961), 305–310. (1961) MR0131268DOI10.1007/BF01353421
  7. Gabeleh, M., 10.1007/s10957-012-0246-8, J. Optim. Theory Appl. 158 (2) (2013), 615–625. (2013) MR3084393DOI10.1007/s10957-012-0246-8
  8. Gabeleh, M., Global optimal solutions of non-self mappings, UPB Sci. Bull., Series A: App. Math. Phys. 75 (2014), 67–74. (2014) MR3130208
  9. Gabeleh, M., 10.1007/s10957-014-0585-8, J. Optim. Theory Appl. 164 (2015), 565–576. (2015) MR3297978DOI10.1007/s10957-014-0585-8
  10. Kim, W.K., Existence of equilibrium pair in best proximity settings, Appl. Math. Sci. 9 (13) (2015), 629–636. (2015) 
  11. Kim, W.K., Kum, S., Lee, K.H., On general best proximity pairs and equilibrium pairs in free abstract economies, Nonlinear Anal. 68 (2008), 2216–2227. (2008) MR2398644
  12. Kim, W.K., Lee, K.H., 10.1016/j.jmaa.2005.04.053, J. Math. Anal. Appl. 316 (2006), 433–446. (2006) MR2206681DOI10.1016/j.jmaa.2005.04.053
  13. Kirk, W.A., Reich, S., Veeramani, P., 10.1081/NFA-120026380, Numer. Funct. Anal. Optim. 24 (7–8) (2003), 851–862. (2003) MR2011594DOI10.1081/NFA-120026380
  14. Kosuru, G.S.R., Veeramani, P., 10.1080/01630563.2011.578900, Numer. Funct. Anal. Optim. 32 (7) (2011), 821–830. (2011) MR2801379DOI10.1080/01630563.2011.578900
  15. Prolla, J.B., 10.1080/01630568308816149, Numer. Funct. Anal. Optim. 5 (4) (1983), 449–455. (1983) MR0703107DOI10.1080/01630568308816149
  16. Raj, V.S., A best proximity point theorem for weakly contractive non-self mappings, Nonlinear Anal. TMA 74 (14) (2011), 4804–4808. (2011) MR2810719
  17. Reich, S., 10.1016/0022-247X(78)90222-6, J. Math. Anal. Appl. 62 (1) (1978), 104–113. (1978) MR0514991DOI10.1016/0022-247X(78)90222-6
  18. Sehgal, V.M., Singh, S.P., A generalization to multifunctions of Fan’s best approximation theorem, Proc. Amer. Math. Soc. 102 (3) (1988), 534–537. (1988) MR0928974
  19. Sehgal, V.M., Singh, S.P., 10.1080/01630568908816298, Numer. Funct. Anal. Optim. 10 (1–2) (1989), 181–184. (1989) MR0978810DOI10.1080/01630568908816298
  20. Suzuki, T., 10.1090/S0002-9939-07-09055-7, Proc. Amer. Math. Soc. 136 (2008), 1861–1869. (2008) MR2373618DOI10.1090/S0002-9939-07-09055-7
  21. Veeramani, P., Kirk, W.A., Eldred, A.A., 10.4064/sm171-3-5, Stud. Math. 171 (3) (2005), 283–293. (2005) MR2188054DOI10.4064/sm171-3-5
  22. Vetrivel, V., Veeramani, P., Bhattacharyya, P., 10.1080/01630569208816486, Numer. Funct. Anal. Optim. 13 (3–4) (1992), 397–402. (1992) MR1179367DOI10.1080/01630569208816486

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.