Best proximity point for proximal Berinde nonexpansive mappings on starshaped sets
Nuttawut Bunlue; Suthep Suantai
Archivum Mathematicum (2018)
- Volume: 054, Issue: 3, page 165-176
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBunlue, Nuttawut, and Suantai, Suthep. "Best proximity point for proximal Berinde nonexpansive mappings on starshaped sets." Archivum Mathematicum 054.3 (2018): 165-176. <http://eudml.org/doc/294659>.
@article{Bunlue2018,
abstract = {In this paper, we introduce the new concept of proximal mapping, namely proximal weak contractions and proximal Berinde nonexpansive mappings. We prove the existence of best proximity points for proximal weak contractions in metric spaces, and for proximal Berinde nonexpansive mappings on starshape sets in Banach spaces. Examples supporting our main results are also given. Our main results extend and generalize some of well-known best proximity point theorems of proximal nonexpansive mappings in the literatures.},
author = {Bunlue, Nuttawut, Suantai, Suthep},
journal = {Archivum Mathematicum},
keywords = {best proximity point; proximal weak contraction mapping; proximal Berinde nonexpansive mapping; starshaped set},
language = {eng},
number = {3},
pages = {165-176},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Best proximity point for proximal Berinde nonexpansive mappings on starshaped sets},
url = {http://eudml.org/doc/294659},
volume = {054},
year = {2018},
}
TY - JOUR
AU - Bunlue, Nuttawut
AU - Suantai, Suthep
TI - Best proximity point for proximal Berinde nonexpansive mappings on starshaped sets
JO - Archivum Mathematicum
PY - 2018
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 054
IS - 3
SP - 165
EP - 176
AB - In this paper, we introduce the new concept of proximal mapping, namely proximal weak contractions and proximal Berinde nonexpansive mappings. We prove the existence of best proximity points for proximal weak contractions in metric spaces, and for proximal Berinde nonexpansive mappings on starshape sets in Banach spaces. Examples supporting our main results are also given. Our main results extend and generalize some of well-known best proximity point theorems of proximal nonexpansive mappings in the literatures.
LA - eng
KW - best proximity point; proximal weak contraction mapping; proximal Berinde nonexpansive mapping; starshaped set
UR - http://eudml.org/doc/294659
ER -
References
top- Basha, S.S., 10.1007/s10957-011-9869-4, J. Optim. Theory Appl. 151 (1) (2011), 210–216. (2011) MR2836473DOI10.1007/s10957-011-9869-4
- Basha, S.S., Veeramani, P., 10.1006/jath.1999.3415, J. Approx. Theory 103 (1) (2000), 119–129. (2000) MR1744381DOI10.1006/jath.1999.3415
- Berinde, V., Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum 9 (2004), 43–53. (2004) MR2111366
- Chen, J., Xiao, S., Wang, H., Deng, S., Best proximity point for the proximal nonexpansive mapping on the starshaped sets, Fixed Point Theory and Applications 19 (2015). (2015) MR3306103
- Eldred, A.A., Veeramani, P., 10.1016/j.jmaa.2005.10.081, J. Math. Anal. Appl. 323 (2) (2006), 1001–1006. (2006) MR2260159DOI10.1016/j.jmaa.2005.10.081
- Fan, K., 10.1007/BF01353421, Math. Ann. 142 (1961), 305–310. (1961) MR0131268DOI10.1007/BF01353421
- Gabeleh, M., 10.1007/s10957-012-0246-8, J. Optim. Theory Appl. 158 (2) (2013), 615–625. (2013) MR3084393DOI10.1007/s10957-012-0246-8
- Gabeleh, M., Global optimal solutions of non-self mappings, UPB Sci. Bull., Series A: App. Math. Phys. 75 (2014), 67–74. (2014) MR3130208
- Gabeleh, M., 10.1007/s10957-014-0585-8, J. Optim. Theory Appl. 164 (2015), 565–576. (2015) MR3297978DOI10.1007/s10957-014-0585-8
- Kim, W.K., Existence of equilibrium pair in best proximity settings, Appl. Math. Sci. 9 (13) (2015), 629–636. (2015)
- Kim, W.K., Kum, S., Lee, K.H., On general best proximity pairs and equilibrium pairs in free abstract economies, Nonlinear Anal. 68 (2008), 2216–2227. (2008) MR2398644
- Kim, W.K., Lee, K.H., 10.1016/j.jmaa.2005.04.053, J. Math. Anal. Appl. 316 (2006), 433–446. (2006) MR2206681DOI10.1016/j.jmaa.2005.04.053
- Kirk, W.A., Reich, S., Veeramani, P., 10.1081/NFA-120026380, Numer. Funct. Anal. Optim. 24 (7–8) (2003), 851–862. (2003) MR2011594DOI10.1081/NFA-120026380
- Kosuru, G.S.R., Veeramani, P., 10.1080/01630563.2011.578900, Numer. Funct. Anal. Optim. 32 (7) (2011), 821–830. (2011) MR2801379DOI10.1080/01630563.2011.578900
- Prolla, J.B., 10.1080/01630568308816149, Numer. Funct. Anal. Optim. 5 (4) (1983), 449–455. (1983) MR0703107DOI10.1080/01630568308816149
- Raj, V.S., A best proximity point theorem for weakly contractive non-self mappings, Nonlinear Anal. TMA 74 (14) (2011), 4804–4808. (2011) MR2810719
- Reich, S., 10.1016/0022-247X(78)90222-6, J. Math. Anal. Appl. 62 (1) (1978), 104–113. (1978) MR0514991DOI10.1016/0022-247X(78)90222-6
- Sehgal, V.M., Singh, S.P., A generalization to multifunctions of Fan’s best approximation theorem, Proc. Amer. Math. Soc. 102 (3) (1988), 534–537. (1988) MR0928974
- Sehgal, V.M., Singh, S.P., 10.1080/01630568908816298, Numer. Funct. Anal. Optim. 10 (1–2) (1989), 181–184. (1989) MR0978810DOI10.1080/01630568908816298
- Suzuki, T., 10.1090/S0002-9939-07-09055-7, Proc. Amer. Math. Soc. 136 (2008), 1861–1869. (2008) MR2373618DOI10.1090/S0002-9939-07-09055-7
- Veeramani, P., Kirk, W.A., Eldred, A.A., 10.4064/sm171-3-5, Stud. Math. 171 (3) (2005), 283–293. (2005) MR2188054DOI10.4064/sm171-3-5
- Vetrivel, V., Veeramani, P., Bhattacharyya, P., 10.1080/01630569208816486, Numer. Funct. Anal. Optim. 13 (3–4) (1992), 397–402. (1992) MR1179367DOI10.1080/01630569208816486
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.