The L r Henstock-Kurzweil integral

Paul M. Musial; Yoram Sagher

Studia Mathematica (2004)

  • Volume: 160, Issue: 1, page 53-81
  • ISSN: 0039-3223

Abstract

top
We present a method of integration along the lines of the Henstock-Kurzweil integral. All L r -derivatives are integrable in this method.

How to cite

top

Paul M. Musial, and Yoram Sagher. "The $L^{r}$ Henstock-Kurzweil integral." Studia Mathematica 160.1 (2004): 53-81. <http://eudml.org/doc/284842>.

@article{PaulM2004,
abstract = {We present a method of integration along the lines of the Henstock-Kurzweil integral. All $L^\{r\}$-derivatives are integrable in this method.},
author = {Paul M. Musial, Yoram Sagher},
journal = {Studia Mathematica},
keywords = { integral; derivative; Henstock-Kurzweil integral; Perron integral; gauge; Dini derivative; doubly subordinate partitions},
language = {eng},
number = {1},
pages = {53-81},
title = {The $L^\{r\}$ Henstock-Kurzweil integral},
url = {http://eudml.org/doc/284842},
volume = {160},
year = {2004},
}

TY - JOUR
AU - Paul M. Musial
AU - Yoram Sagher
TI - The $L^{r}$ Henstock-Kurzweil integral
JO - Studia Mathematica
PY - 2004
VL - 160
IS - 1
SP - 53
EP - 81
AB - We present a method of integration along the lines of the Henstock-Kurzweil integral. All $L^{r}$-derivatives are integrable in this method.
LA - eng
KW - integral; derivative; Henstock-Kurzweil integral; Perron integral; gauge; Dini derivative; doubly subordinate partitions
UR - http://eudml.org/doc/284842
ER -

NotesEmbed ?

top

You must be logged in to post comments.