Multi-dimensional Fejér summability and local Hardy spaces

Ferenc Weisz

Studia Mathematica (2009)

  • Volume: 194, Issue: 2, page 181-195
  • ISSN: 0039-3223

Abstract

top
It is proved that the multi-dimensional maximal Fejér operator defined in a cone is bounded from the amalgam Hardy space W ( h p , ) to W ( L p , ) . This implies the almost everywhere convergence of the Fejér means in a cone for all f W ( L , ) , which is larger than L ( d ) .

How to cite

top

Ferenc Weisz. "Multi-dimensional Fejér summability and local Hardy spaces." Studia Mathematica 194.2 (2009): 181-195. <http://eudml.org/doc/284861>.

@article{FerencWeisz2009,
abstract = {It is proved that the multi-dimensional maximal Fejér operator defined in a cone is bounded from the amalgam Hardy space $W(h_\{p\},ℓ_\{∞\})$ to $W(L_\{p\},ℓ_\{∞\})$. This implies the almost everywhere convergence of the Fejér means in a cone for all $f ∈ W(L₁,ℓ_\{∞\})$, which is larger than $L₁(ℝ^\{d\})$.},
author = {Ferenc Weisz},
journal = {Studia Mathematica},
keywords = {Wiener amalgam spaces; local Hardy spaces; Fejér summability; Fourier transforms; atomic decomposition},
language = {eng},
number = {2},
pages = {181-195},
title = {Multi-dimensional Fejér summability and local Hardy spaces},
url = {http://eudml.org/doc/284861},
volume = {194},
year = {2009},
}

TY - JOUR
AU - Ferenc Weisz
TI - Multi-dimensional Fejér summability and local Hardy spaces
JO - Studia Mathematica
PY - 2009
VL - 194
IS - 2
SP - 181
EP - 195
AB - It is proved that the multi-dimensional maximal Fejér operator defined in a cone is bounded from the amalgam Hardy space $W(h_{p},ℓ_{∞})$ to $W(L_{p},ℓ_{∞})$. This implies the almost everywhere convergence of the Fejér means in a cone for all $f ∈ W(L₁,ℓ_{∞})$, which is larger than $L₁(ℝ^{d})$.
LA - eng
KW - Wiener amalgam spaces; local Hardy spaces; Fejér summability; Fourier transforms; atomic decomposition
UR - http://eudml.org/doc/284861
ER -

NotesEmbed ?

top

You must be logged in to post comments.