On the Heyde theorem for discrete Abelian groups

G. M. Feldman

Studia Mathematica (2006)

  • Volume: 177, Issue: 1, page 67-79
  • ISSN: 0039-3223

Abstract

top
Let X be a countable discrete Abelian group, Aut(X) the set of automorphisms of X, and I(X) the set of idempotent distributions on X. Assume that α₁, α₂, β₁, β₂ ∈ Aut(X) satisfy β α - 1 ± β α - 1 A u t ( X ) . Let ξ₁, ξ₂ be independent random variables with values in X and distributions μ₁, μ₂. We prove that the symmetry of the conditional distribution of L₂ = β₁ξ₁ + β₂ξ₂ given L₁ = α₁ξ₁ + α₂ξ₂ implies that μ₁, μ₂ ∈ I(X) if and only if the group X contains no elements of order two. This theorem can be considered as an analogue for discrete Abelian groups of the well-known Heyde theorem where the Gaussian distribution on the real line is characterized by the symmetry of the conditional distribution of one linear form given another.

How to cite

top

G. M. Feldman. "On the Heyde theorem for discrete Abelian groups." Studia Mathematica 177.1 (2006): 67-79. <http://eudml.org/doc/284985>.

@article{G2006,
abstract = {Let X be a countable discrete Abelian group, Aut(X) the set of automorphisms of X, and I(X) the set of idempotent distributions on X. Assume that α₁, α₂, β₁, β₂ ∈ Aut(X) satisfy $β₁α₁^\{-1\} ± β₂α₂^\{-1\} ∈ Aut(X)$. Let ξ₁, ξ₂ be independent random variables with values in X and distributions μ₁, μ₂. We prove that the symmetry of the conditional distribution of L₂ = β₁ξ₁ + β₂ξ₂ given L₁ = α₁ξ₁ + α₂ξ₂ implies that μ₁, μ₂ ∈ I(X) if and only if the group X contains no elements of order two. This theorem can be considered as an analogue for discrete Abelian groups of the well-known Heyde theorem where the Gaussian distribution on the real line is characterized by the symmetry of the conditional distribution of one linear form given another.},
author = {G. M. Feldman},
journal = {Studia Mathematica},
keywords = {discrete Abelian group; characterization of probability distributions; idempotent distribution; torsion-free groups},
language = {eng},
number = {1},
pages = {67-79},
title = {On the Heyde theorem for discrete Abelian groups},
url = {http://eudml.org/doc/284985},
volume = {177},
year = {2006},
}

TY - JOUR
AU - G. M. Feldman
TI - On the Heyde theorem for discrete Abelian groups
JO - Studia Mathematica
PY - 2006
VL - 177
IS - 1
SP - 67
EP - 79
AB - Let X be a countable discrete Abelian group, Aut(X) the set of automorphisms of X, and I(X) the set of idempotent distributions on X. Assume that α₁, α₂, β₁, β₂ ∈ Aut(X) satisfy $β₁α₁^{-1} ± β₂α₂^{-1} ∈ Aut(X)$. Let ξ₁, ξ₂ be independent random variables with values in X and distributions μ₁, μ₂. We prove that the symmetry of the conditional distribution of L₂ = β₁ξ₁ + β₂ξ₂ given L₁ = α₁ξ₁ + α₂ξ₂ implies that μ₁, μ₂ ∈ I(X) if and only if the group X contains no elements of order two. This theorem can be considered as an analogue for discrete Abelian groups of the well-known Heyde theorem where the Gaussian distribution on the real line is characterized by the symmetry of the conditional distribution of one linear form given another.
LA - eng
KW - discrete Abelian group; characterization of probability distributions; idempotent distribution; torsion-free groups
UR - http://eudml.org/doc/284985
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.