Products of factorials modulo p
Florian Luca; Pantelimon Stănică
Colloquium Mathematicae (2003)
- Volume: 96, Issue: 2, page 191-205
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topFlorian Luca, and Pantelimon Stănică. "Products of factorials modulo p." Colloquium Mathematicae 96.2 (2003): 191-205. <http://eudml.org/doc/285097>.
@article{FlorianLuca2003,
abstract = {We show that if p ≠ 5 is a prime, then the numbers
$\{1/p (\{p \atop \{m₁,...,m_t\}\}) | t ≥ 1, m_i ≥ 0 for i = 1,...,t and ∑_\{i=1\}^t m_i = p\}$
cover all the nonzero residue classes modulo p.},
author = {Florian Luca, Pantelimon Stănică},
journal = {Colloquium Mathematicae},
keywords = {reduced residue classes modulo an odd prime; binomial coefficient},
language = {eng},
number = {2},
pages = {191-205},
title = {Products of factorials modulo p},
url = {http://eudml.org/doc/285097},
volume = {96},
year = {2003},
}
TY - JOUR
AU - Florian Luca
AU - Pantelimon Stănică
TI - Products of factorials modulo p
JO - Colloquium Mathematicae
PY - 2003
VL - 96
IS - 2
SP - 191
EP - 205
AB - We show that if p ≠ 5 is a prime, then the numbers
${1/p ({p \atop {m₁,...,m_t}}) | t ≥ 1, m_i ≥ 0 for i = 1,...,t and ∑_{i=1}^t m_i = p}$
cover all the nonzero residue classes modulo p.
LA - eng
KW - reduced residue classes modulo an odd prime; binomial coefficient
UR - http://eudml.org/doc/285097
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.