A functional calculus description of real interpolation spaces for sectorial operators
Studia Mathematica (2005)
- Volume: 171, Issue: 2, page 177-195
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topMarkus Haase. "A functional calculus description of real interpolation spaces for sectorial operators." Studia Mathematica 171.2 (2005): 177-195. <http://eudml.org/doc/285171>.
@article{MarkusHaase2005,
abstract = {For a holomorphic function ψ defined on a sector we give a condition implying the identity
$(X,(A^\{α\}))_\{θ,p\} = \{x ∈ X | t^\{-θ Re α\} ψ(tA) ∈ L⁎^\{p\}((0,∞);X)\}$
where A is a sectorial operator on a Banach space X. This yields all common descriptions of the real interpolation spaces for sectorial operators and allows easy proofs of the moment inequalities and reiteration results for fractional powers.},
author = {Markus Haase},
journal = {Studia Mathematica},
keywords = {sectorial operators; functional calculus; real interpolation spaces; corona theorem; Bézout equation},
language = {eng},
number = {2},
pages = {177-195},
title = {A functional calculus description of real interpolation spaces for sectorial operators},
url = {http://eudml.org/doc/285171},
volume = {171},
year = {2005},
}
TY - JOUR
AU - Markus Haase
TI - A functional calculus description of real interpolation spaces for sectorial operators
JO - Studia Mathematica
PY - 2005
VL - 171
IS - 2
SP - 177
EP - 195
AB - For a holomorphic function ψ defined on a sector we give a condition implying the identity
$(X,(A^{α}))_{θ,p} = {x ∈ X | t^{-θ Re α} ψ(tA) ∈ L⁎^{p}((0,∞);X)}$
where A is a sectorial operator on a Banach space X. This yields all common descriptions of the real interpolation spaces for sectorial operators and allows easy proofs of the moment inequalities and reiteration results for fractional powers.
LA - eng
KW - sectorial operators; functional calculus; real interpolation spaces; corona theorem; Bézout equation
UR - http://eudml.org/doc/285171
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.