Spectral projections for the twisted Laplacian
Studia Mathematica (2007)
- Volume: 180, Issue: 2, page 103-110
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topHerbert Koch, and Fulvio Ricci. "Spectral projections for the twisted Laplacian." Studia Mathematica 180.2 (2007): 103-110. <http://eudml.org/doc/285179>.
@article{HerbertKoch2007,
	abstract = {Let n ≥ 1, d = 2n, and let (x,y) ∈ ℝⁿ × ℝⁿ be a generic point in ℝ²ⁿ. The twisted Laplacian
$L = -1/2 ∑_\{j=1\}^\{n\} [(∂_\{x_\{j\}\} + iy_\{j\})² + (∂_\{y_\{j\}\} - ix_\{j\})²]$
has the spectrum n + 2k = λ²: k a nonnegative integer. Let $P_\{λ\}$ be the spectral projection onto the (infinite-dimensional) eigenspace. We find the optimal exponent ϱ(p) in the estimate
$||P_\{λ\}u||_\{L^\{p\}(ℝ^\{d\})\} ≲ λ^\{ϱ(p)\} ||u||_\{L²(ℝ^\{d\})\}$
for all p ∈ [2,∞], improving previous partial results by Ratnakumar, Rawat and Thangavelu, and by Stempak and Zienkiewicz. The expression for ϱ(p) is
ϱ(p) = 1/p -1/2 if 2 ≤ p ≤ 2(d+1)/(d-1),
ϱ(p) = (d-2)/2 - d/p if 2(d+1)/(d-1) ≤ p ≤ ∞.},
	author = {Herbert Koch, Fulvio Ricci},
	journal = {Studia Mathematica},
	keywords = {spectral projection; twisted Laplacian},
	language = {eng},
	number = {2},
	pages = {103-110},
	title = {Spectral projections for the twisted Laplacian},
	url = {http://eudml.org/doc/285179},
	volume = {180},
	year = {2007},
}
TY  - JOUR
AU  - Herbert Koch
AU  - Fulvio Ricci
TI  - Spectral projections for the twisted Laplacian
JO  - Studia Mathematica
PY  - 2007
VL  - 180
IS  - 2
SP  - 103
EP  - 110
AB  - Let n ≥ 1, d = 2n, and let (x,y) ∈ ℝⁿ × ℝⁿ be a generic point in ℝ²ⁿ. The twisted Laplacian
$L = -1/2 ∑_{j=1}^{n} [(∂_{x_{j}} + iy_{j})² + (∂_{y_{j}} - ix_{j})²]$
has the spectrum n + 2k = λ²: k a nonnegative integer. Let $P_{λ}$ be the spectral projection onto the (infinite-dimensional) eigenspace. We find the optimal exponent ϱ(p) in the estimate
$||P_{λ}u||_{L^{p}(ℝ^{d})} ≲ λ^{ϱ(p)} ||u||_{L²(ℝ^{d})}$
for all p ∈ [2,∞], improving previous partial results by Ratnakumar, Rawat and Thangavelu, and by Stempak and Zienkiewicz. The expression for ϱ(p) is
ϱ(p) = 1/p -1/2 if 2 ≤ p ≤ 2(d+1)/(d-1),
ϱ(p) = (d-2)/2 - d/p if 2(d+1)/(d-1) ≤ p ≤ ∞.
LA  - eng
KW  - spectral projection; twisted Laplacian
UR  - http://eudml.org/doc/285179
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 